Skip to main content
Log in

Scale-Dependent Homogenization of Random Hyperbolic Thermoelastic Solids

  • Research Note
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The scale-dependent homogenization is applied to a hyperbolic thermoelastic material with two relaxation times, where conductivity and stiffness are wide-sense stationary ergodic random fields. The previously established scaling functions for the Fourier-type conductivity and linear elastic responses are used to describe the trends to scale from the mesoscale statistical volume element level (SVE) to the (representative volume element) RVE level of a deterministic homogeneous continuum. In the case of white-noise type random fields, this finite-size scaling can be quantified via universally appearing stretched exponentials for conductivity and elasticity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  2. Blanco, P.J., Giusti, S.M.: Thermomechanical multiscale constitutive modeling: accounting for microstructural thermal effects. J. Elast. 115(1), 27–46 (2014). doi:10.1007/s10659-013-9445-2

    Article  MATH  MathSciNet  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  4. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2009)

    Book  Google Scholar 

  5. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  ADS  MATH  Google Scholar 

  6. Ostoja-Starzewski, M.: Dissipation function in hyperbolic thermoelasticity. J. Therm. Stresses 34(1), 68–74 (2011). doi:10.1080/01495739.2010.511934

    Article  MathSciNet  Google Scholar 

  7. Ziegler, H.: An Introduction to Thermomechanics. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

  8. Ranganathan, S.I., Ostoja-Starzewski, M.: Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal symmetries. Phys. Rev. B 77, 214308 (2008). doi:10.1103/PhysRevB.77.214308

    Article  ADS  Google Scholar 

  9. Dalaq, A.S., Ranganathan, S.I., Ostoja-Starzewski, M.: Scaling function in conductivity of planar random checkerboards. Compos. Mater. Sci. 79, 252–261 (2013). http://dx.doi.org/10.1016/j.commatsci.2013.05.006

    Article  Google Scholar 

  10. Ranganathan, S.I., Ostoja-Starzewski, M.: Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J. Mech. Phys. Solids 56, 2773–2791 (2008). doi:10.1016/j.jmps.2008.05.001

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Raghavan, B.V., Ranganathan, S.I.: Bounds and scaling laws in planar elasticity. Acta Mech. (2014). doi:10.1007/s00707-014-1099-z

    MathSciNet  Google Scholar 

  12. Ranganathan, S.I., Ostoja-Starzewski, M.: Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008). doi:10.1103/PhysRevLett.101.055504

    Article  ADS  Google Scholar 

  13. Khisaeva, Z.F., Ostoja-Starzewski, M.: Scale effects in infinitesimal and finite thermo elasticity of random composites. J. Therm. Stresses 30, 587–603 (2007). doi:10.1080/01495730701274195

    Article  Google Scholar 

Download references

Acknowledgements

Comments of two anonymous reviewers helped improve this note. The work was supported by the RDECOM-AMSAA: Army Materiel Systems Analysis Activity (William Davis) under the auspices of the US Army Research Office Scientific Services Program administered by Battelle (W911NF-11-D-0001 DO# 0169; TCN 12-078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ostoja-Starzewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostoja-Starzewski, M., Costa, L. & Ranganathan, S.I. Scale-Dependent Homogenization of Random Hyperbolic Thermoelastic Solids. J Elast 118, 243–250 (2015). https://doi.org/10.1007/s10659-014-9483-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-014-9483-4

Keywords

Mathematics Subject Classification

Navigation