Skip to main content
Log in

Reverse Poynting Effects in the Torsion of Soft Biomaterials

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The torsion of solid cylindrical bodies has been widely investigated in the context of isotropic nonlinear elasticity theory with application to the behavior of rubber-like materials. More recently, this problem for anisotropic materials has attracted attention in investigations of the biomechanics of soft tissues and has been applied, for example, to examine the mechanical behavior of passive papillary muscles of the heart. Here we consider the torsion of a solid circular cylinder composed of a transversely isotropic incompressible material described by a strain-energy function that depends on the full set of relevant invariants. Three specific strain-energy density functions modeling soft tissues are considered in detail. These models are quadratic in the anisotropic invariants, linear in the isotropic strain invariants and are consistent with the linear theory. The classic Poynting effect found for isotropic rubber-like materials where torsion induces elongation of the cylinder is shown to be significantly different for the transversely isotropic materials considered here. For sufficiently small angles of twist that are consistent with the physiological strain range, a reverse Poynting effect is demonstrated where the cylinder tends to shorten on twisting. The results obtained here have important implications for the development of accurate torsion test protocols for determination of material properties of soft biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers and biological tissue. Appl. Mech. Rev. 40, 1699–1734 (1989)

    Article  ADS  Google Scholar 

  2. Criscione, J.C., Lorenzen-Schmidt, I., Humphrey, J.D., Hunter, W.C.: Mechanical contribution of endocardium during finite extension and torsion experiments on papillary muscle. Ann. Biomed. Eng. 27, 123–130 (1999)

    Article  Google Scholar 

  3. Destrade, M., Horgan, C.O., Murphy, J.G.: Dominant negative Poynting effect in simple shearing of soft tissues. J. Eng. Math. (2014). doi:10.1007/s10665-014-9706-5

    MATH  Google Scholar 

  4. Destrade, M., Mac Donald, B., Murphy, J.G., Saccomandi, G.: At least three invariants are necessary to model the mechanical response of incompressible, transversely isotropic materials. Comput. Mech. 52, 959–969 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dokos, S., Smaill, B.H., Young, A.A., LeGrice, I.J.: Shear properties of passive ventricular myocardium. Am. J. Physiol., Heart Circ. Physiol. 283, H2650–H2659 (2002)

    Google Scholar 

  6. El Hamdaoui, M., Merodio, J., Ogden, R.W., Rodriguez, J.: Finite elastic deformations of transversely isotropic circular tubes. Int. J. Solids Struct. 51, 1188–1196 (2014)

    Article  Google Scholar 

  7. Ericksen, J.L., Rivlin, R.S.: Large elastic deformations of homogeneous anisotropic materials. J. Ration. Mech. Anal. 3, 281–301 (1954). Reprinted in: Barenblatt, G.I., Joseph, D.D. (eds.): Collected Papers of R.S. Rivlin, vol. 1, pp. 467–487. Springer, New York (1997)

    MATH  MathSciNet  Google Scholar 

  8. Feng, Y., Okamoto, R.J., Namani, R., Genin, G.M., Bayly, P.V.: Measurements of mechanical anisotropy in brain tissue and implications for transversely isotropic material models of white matter. J. Mech. Behav. Biomed. Mater. 23, 117–132 (2013)

    Article  Google Scholar 

  9. Gennisson, J.-L., Catheline, S., Chaffa, S., Fink, M.: Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J. Acoust. Soc. Am. 114, 536–541 (2003)

    Article  ADS  Google Scholar 

  10. Gorman, J.H., Gupta, K.B., Streicher, J.T., Gorman, R.C., Jackson, B.M., Ratcliffe, M.B., Bogen, D.K., Edmunds, L.H.: Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112, 712–726 (1996)

    Article  Google Scholar 

  11. Horgan, C.O., Murphy, J.G.: Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J. Elast. 98, 205–221 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Horgan, C.O., Murphy, J.G.: Simple shearing of soft biological tissues. Proc. R. Soc. Lond. A 467, 760–777 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Horgan, C.O., Murphy, J.G.: On the normal stresses in simple shearing of fiber-reinforced nonlinearly elastic materials. J. Elast. 104, 343–355 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Horgan, C.O., Murphy, J.G.: Torsion of incompressible fiber-reinforced nonlinearly elastic circular cylinders. J. Elast. 103, 235–246 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Horgan, C.O., Murphy, J.G.: On the modeling of extension-torsion experimental data for transversely isotropic biological soft tissues. J. Elast. 108, 179–191 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Horgan, C.O., Saccomandi, G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. Horgan, C.O., Smayda, M.: The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials. Mech. Mater. 51, 43–52 (2012)

    Article  Google Scholar 

  18. Humphrey, J.D.: Cardiovascular Solid Mechanics. Springer, New York (2002)

    Book  Google Scholar 

  19. Humphrey, J.D., Barazotto, R.L. Jr., Hunter, W.C.: Finite extension and torsion of papillary muscles: a theoretical framework. J. Biomech. 25, 541–547 (1992)

    Article  Google Scholar 

  20. Janmey, P.M., McCormick, M.E., Rammensee, S., Leight, J.L., Georges, P.C., MacKintosh, F.C.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007)

    Article  ADS  Google Scholar 

  21. Kang, H., Wen, Q., Janmey, P.M., Tang, J.X., Conti, E., MacKintosh, F.C.: Nonlinear elasticity of stiff filament networks: strain stiffening, negative normal stress, and filament alignment in fibrin gels. J. Phys. Chem. B 113, 3799–3805 (2009)

    Article  Google Scholar 

  22. Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40, 213–227 (2005)

    Article  ADS  MATH  Google Scholar 

  23. Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. Lond. A 467, 3633–3646 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Mihai, L.A., Goriely, A.: Numerical simulation of shear and the Poynting effects by the finite element method: an application of the generalized empirical inequalities in nonlinear elasticity. Int. J. Non-Linear Mech. 49, 1–14 (2013)

    Article  Google Scholar 

  25. Morrow, D.A., Haut Donahue, T.L., Odegard, G.M., Kaufman, K.R.: Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 3, 124–129 (2010)

    Article  Google Scholar 

  26. Murphy, J.G.: Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur. J. Mech. A, Solids 42, 90–96 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Nardinocchi, P., Svaton, T., Teresi, L.: Torsional deformations in incompressible fiber-reinforced cylindrical pipes. Eur. J. Mech. A, Solids 29, 266–273 (2010)

    Article  ADS  Google Scholar 

  28. Notomi, Y., Lysyansky, P., Setser, R.M., Shiota, T., Popovic, Z.B., Martin-Miklovic, M.G., Weaver, J.A., Oryszak, S.J., Greenberg, N.L., White, R.D., Thomas, J.D.: Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J. Am. Coll. Cardiol. 45, 2034–2041 (2005)

    Article  Google Scholar 

  29. Ogden, R.W.: Elements of the theory of finite elasticity. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications. London Mathematical Society Lecture Notes Series, vol. 283, pp. 1–57. Cambridge University Press, Cambridge (2001)

    Chapter  Google Scholar 

  30. Papazoglou, S., Rump, J., Braun, J., Sack, I.: Shear wave group velocity inversion in MR elastography of human skeletal muscle. Magn. Reson. Med. 56, 489–497 (2006)

    Article  Google Scholar 

  31. Poynting, J.H.: On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted. Proc. R. Soc. Lond. A 82, 546–559 (1909)

    Article  ADS  MATH  Google Scholar 

  32. Rivlin, R.S.: Large elastic deformations of isotropic materials VI. Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. Lond. A 242, 173–195 (1949). Reprinted in: Barenblatt, G.I., Joseph, D.D. (eds.): Collected Papers of R.S. Rivlin, vol. 1, pp. 120–142. Springer, New York (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Sinkus, R., Tanter, M., Catheline, S., Lorenzen, J., Kuhl, C., Sondermann, E., Fink, M.: Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn. Reson. Med. 53, 372–387 (2005)

    Article  Google Scholar 

  34. Taber, L.A.: Nonlinear Theory of Elasticity: Applications in Biomechanics. World Scientific, Singapore (2004)

    Book  Google Scholar 

  35. Taber, L.A., Yang, M., Podszus, W.W.: Mechanics of ventricular torsion. J. Biomech. 29, 745–752 (1996)

    Article  Google Scholar 

  36. Tibayan, F.A., Lai, D.T.M., Timek, T.A., Dagum, P., Liang, D., Daughters, G.T., Ingels, N.B., Miller, D.C.: Alterations in left ventricular torsion in tachycardia-induced dilated cardiomyopathy. J. Thorac. Cardiovasc. Surg. 124, 43–49 (2002)

    Article  Google Scholar 

  37. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flugge, S. (ed.) Handbuch der Physik (3rd edn.), vol. III/3. Springer, Berlin (2004)

    Google Scholar 

  38. Wu, M.S., Kirchner, H.O.K.: Nonlinear elasticity modeling of biogels. J. Mech. Phys. Solids 58, 300–310 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to a reviewer for constructive suggestions on improving an earlier version of the manuscript and for drawing our attention to reference [6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius O. Horgan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horgan, C.O., Murphy, J.G. Reverse Poynting Effects in the Torsion of Soft Biomaterials. J Elast 118, 127–140 (2015). https://doi.org/10.1007/s10659-014-9482-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-014-9482-5

Keywords

Mathematics Subject Classification (2010)

Navigation