Skip to main content
Log in

Pure Torsion for Stretch-Based Constitutive Models for Incompressible Isotropic Hyperelastic Soft Materials

  • Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Stretch-based constitutive models for isotropic hyperelastic materials as alternatives to the classical strain invariant models have been the subject of considerable recent attention largely motivated by application to modelling the mechanical response of soft tissues. One such four-parameter constitutive model was proposed recently by Anssari-Benam (J. Elast. 153:219–244, 2023) for incompressible isotropic hyperelastic soft materials. The model was deemed to be comprehensive in that several well-known strain-energies may be recovered for some particular and limiting values of some of the parameters. The model is a generalization of several related simpler models based on microstructural considerations that have been shown to match well with experimental data for a wide variety of soft materials. In particular, the celebrated one-term Ogden model is obtained as a special case. Here we examine the response of the new model for the problem of pure torsion for a solid circular cylinder with particular emphasis on the Poynting effects governing the lengthening or shortening of the cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anssari-Benam, A.: Large isotropic elastic deformations: on a comprehensive model to correlate the theory and experiments for incompressible rubber-like materials. J. Elast. 153, 219–244 (2023)

    Article  MathSciNet  Google Scholar 

  2. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326, 565–584 (1972)

    Article  Google Scholar 

  3. Horgan, C.O., Murphy, J.G.: Exponents of the one-term Ogden model: insights from simple shear. Philos. Trans. R. Soc. Lond. A 380, 20210328 (2022)

    MathSciNet  Google Scholar 

  4. Lohr, M.J., Sugerman, G.P., Kakaletsis, S., Lejeune, E., Rausch, M.K.: An introduction to the Ogden model in biomechanics: benefits, implementation tools and limitations. Philos. Trans. R. Soc. Lond. A 380, 20210365 (2022)

    MathSciNet  Google Scholar 

  5. Horgan, C.O.: On homogeneous deformations for a new constitutive model for incompressible isotropic hyperelastic soft materials. Mech. Soft Mater. 5, Article ID 3 (2023)

    Article  Google Scholar 

  6. Horgan, C.O., Murphy, J.G.: Limiting chain extensibility models of Valanis-Landel type. J. Elast. 86, 101–111 (2007)

    Article  MathSciNet  Google Scholar 

  7. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  8. Anssari-Benam, A., Destrade, M., Saccomandi, G.: Modelling brain tissue with the Ogden model and an alternative family of constitutive models. Phil. Trans. Roy. Soc. Lond. A 380, 20210325 (2022)

    MathSciNet  Google Scholar 

  9. Anssari-Benam, A.: On a new class of non-Gaussian molecular based constitutive models with limiting chain extensibility for incompressible rubber-like materials. Math. Mech. Solids 26, 1660–1674 (2021)

    Article  MathSciNet  Google Scholar 

  10. Anssari-Benam, A., Bucchi, A.: A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers. Int. J. Non-Linear Mech. 128, 103626 (2021)

    Article  Google Scholar 

  11. Anssari-Benam, A., Horgan, C.O.: On modelling simple shear for isotropic incompressible rubber-like materials. J. Elast. 147, 83–111 (2021)

    Article  MathSciNet  Google Scholar 

  12. Anssari-Benam, A., Horgan, C.O.: Extension and torsion of rubber-like hollow and solid circular cylinders for incompressible isotropic hyperelastic materials with limiting chain extensibility. Eur. J. Mech. A, Solids 92, 104443 (2022)

    Article  MathSciNet  Google Scholar 

  13. Anssari-Benam, A., Horgan, C.O.: New results in the theory of plane strain flexure of incompressible isotropic hyperelastic materials. Proc. R. Soc. Lond. A 478, 20210773 (2022)

    MathSciNet  Google Scholar 

  14. Anssari-Benam, A., Horgan, C.O.: New constitutive models for the finite deformation of isotropic compressible elastomers. Mech. Mater. 172, 104403 (2022)

    Article  Google Scholar 

  15. Anssari-Benam, A.: Comparative modelling results between a separable and a non-separable form of principal stretches-based strain energy functions for a variety of isotropic incompressible soft solids: Ogden model compared with a parent model. Mech. Soft Mater. 5, Article ID 2 (2023)

    Article  Google Scholar 

  16. Horgan, C.O.: A note on a class of generalized neo-Hookean models for isotropic incompressible hyperelastic materials. Int. J. Non-Linear Mech. 129, 103665 (2021)

    Article  Google Scholar 

  17. Horgan, C.O., Murphy, J.G.: Pure torsion for incompressible hyperelastic materials of Valanis-Landel form. Proc. R. Soc. Lond. A 479, 20230011 (2023)

    MathSciNet  Google Scholar 

  18. Horgan, C.O., Murphy, J.G.: Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J. Elast. 98, 205–221 (2010)

    Article  MathSciNet  Google Scholar 

  19. Horgan, C.O., Murphy, J.G.: Poynting and reverse Poynting effects in soft materials. Soft Matter 13, 4916–4923 (2017)

    Article  Google Scholar 

  20. Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials. Proc. R. Soc. Lond. A 467, 3633–3646 (2011)

    MathSciNet  Google Scholar 

  21. Vitral, E.: Stretch formulations and the Poynting effect in nonlinear elasticity. Int. J. Non-Linear Mech. 148, 104293 (2023)

    Article  Google Scholar 

  22. Horgan, C.O., Vitral, E.: Further results on stretch formulations of simple shear and pure torsion for incompressible isotropic hyperelastic materials. J. Elast. 153, 207–217 (2023)

    Article  MathSciNet  Google Scholar 

  23. Balbi, V., Trotta, M., Destrade, M., NiAnnaidh, A.: Poynting effect of brain matter in torsion. Soft Matter 15, 5147–5153 (2019)

    Article  Google Scholar 

  24. Misra, A., et al.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)

    Article  Google Scholar 

  25. Ghobani, A., et al.: Inverted and programmable Poynting effects in metamaterials. Adv. Sci. 8(20), Article ID e2102279 (2021)

    Article  Google Scholar 

  26. Horgan, C.O., Saccomandi, G.: A description of arterial wall mechanics using limiting chain extensibility constitutive models. Biomech. Model. Mechanobiol. 1, 251–266 (2003)

    Article  Google Scholar 

  27. Horgan, C.O., Saccomandi, G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. J. Elast. 56, 159–170 (1999)

    Article  Google Scholar 

  28. Kanner, L.M., Horgan, C.O.: On extension and torsion of strain-stiffening rubber-like elastic circular cylinders. J. Elast. 93, 39–61 (2008)

    Article  MathSciNet  Google Scholar 

  29. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984). Reprinted by Dover, New York, 1997

    Google Scholar 

  30. Horgan, C.O., Murphy, J.G.: A perturbation analysis of pure torsion of incompressible hyperelastic cylinders. Int. J. Non-Linear Mech. 158, #104576 (2024)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to A. Anssari-Benam and J. G. Murphy for helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

This work is the sole contribution of the corresponding author

Corresponding author

Correspondence to Cornelius O. Horgan.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Evaluation of the Integrals (3.26), (3.27)

We recall from Sect. 3 that

$$ K_{1} = \int _{1}^{\lambda _{A}} g(x)H(x)dx + \int _{1}^{\frac{1}{\lambda _{A}}} g(x)H(x)dx - \frac{1}{\alpha} \int _{1}^{\lambda _{A}} (x - x^{ - 3})H(x)dx $$
(A.1)

and

$$ K_{2} = \int _{1}^{\lambda _{A}} h(x)H(x)dx + \int _{1}^{\frac{1}{\lambda _{A}}} h(x)H(x)dx, $$
(A.2)

where \(H\) is given by

$$ H \equiv - \frac{3(n - 1)N}{x^{\alpha} + x^{ - \alpha} + 1 - 3N} \ge 0, $$
(A.3)

and where \(g(x)\) and \(h(x)\) are given by

$$ g(x) = \frac{\left ( x^{2} - 2 \right )\left ( 1 - x^{2} \right )x^{\alpha - 3}}{\alpha},\qquad h(x) = \frac{\left ( x^{2} - 1 \right )^{2}x^{\alpha - 3}}{\alpha}. $$
(A.4)

Case 1 \(n = 3, \alpha = 2 \): Verification of (4.9), (4.10)

Thus we have

$$ g(x) = \frac{\left ( x^{2} - 2 \right )\left ( 1 - x^{2} \right )}{2x}, h(x) = \frac{\left ( x^{2} - 1 \right )^{2}}{2x}, H = - \frac{6N}{x^{2} + x^{ - 2} + 1 - 3N}. $$
(A.5)

To evaluate \(K_{1}\), it proves convenient to combine the first and third integrals in (A.1) to get

$$ I_{1} \equiv - 3N\int _{1}^{\lambda _{A}} \frac{\left ( - x^{3} + x^{ - 3} - 2x^{ - 1} + 2x \right )dx}{x^{2} + x^{ - 2} + 1 - 3N}. $$
(A.6)

The second integral in (A.1), denoted by \(I_{2}\), can be converted to an integral with the same upper limit as in (A.6) on using an obvious change of variable to read

$$ I_{2} \equiv 3N\int _{1}^{\lambda _{A}} \frac{\left ( 3x^{ - 3} - x^{ - 5} - 2x^{ - 1} \right )dx}{x^{2} + x^{ - 2} + 1 - 3N}. $$
(A.7)

Thus we find that

$$ K_{1} = I_{1} + I_{2} = 3N\int _{1}^{\lambda _{A}} \frac{\left ( x^{3} + 2x^{ - 3} - x^{ - 5} - 2x \right )dx}{x^{2} + x^{ - 2} + 1 - 3N}. $$
(A.8)

It is convenient to rewrite this as

$$ K_{1} = - 9(1 - N)N\int _{1}^{\lambda _{A}} \frac{\left ( x - x^{ - 3} \right )dx}{x^{2} + x^{ - 2} + 1 - 3N} + 3N\int _{1}^{\lambda _{A}} \left ( x - x^{ - 3} \right )dx, $$
(A.9)

so that we obtain

$$ K_{1} = - \frac{9(1 - N)N}{2}\ln \left ( x^{2} + x^{ - 2} + 1 - 3N \right )|_{1}^{\lambda _{A}} + \frac{3N}{2}\left ( x^{2} + x^{ - 2} \right )|_{1}^{\lambda _{A}}. $$
(A.10)

On evaluation and using the fact that \(\lambda _{A}^{2} + \lambda _{A}^{ - 2} = 2 + \psi ^{2}A^{2}\), we find that

$$ K_{1} = \frac{3N}{2}\psi ^{2}A^{2} + \frac{9N(N - 1)}{2}\ln \left ( \frac{\psi ^{2}A^{2} - 3N + 3}{3 - 3N} \right ). $$
(A.11)

On substitution into (4.6) and using the first of (4.8), we recover (4.9) as desired. The derivation of (4.10) follows along similar lines.

Case 2 \(n \to \infty , \alpha = 2 \):Verification of (4.15).

When \(\alpha = 2\), we have, on recalling (3.15), (3.18) and (4.12),

$$ g(x) = \frac{\left ( x^{2} - 2 \right )\left ( 1 - x^{2} \right )}{2x}, h(x) = \frac{\left ( x^{2} - 1 \right )^{2}}{2x}, G = - \frac{3(N - 1)}{x^{2} + x^{ - 2} + 1 - 3N}. $$
(A.12)

Proceeding from (4.13) as in (A.6)–(A.11), and setting \(J_{m} = 3\left ( N - 1 \right )\) one finds that

$$ \hat{N} = \frac{\mu \pi J_{m}A^{2}}{2}\left [ 1 + \frac{J_{m}}{\psi ^{2}A^{2}}\ln (1 - \frac{\psi ^{2}A^{2}}{J_{m}}) \right ], $$
(A.13)

which is the result (4.15). This is exactly the result obtained in [27] for the Gent model derived on using the classical invariant approach.

Appendix B: Evaluation of the Integrals \(K_{3}\), \(K_{4}\)

\(\alpha = 6\): We recall from (3.26) in Sect. 3 that in this case

$$ K_{3} = \int _{1}^{\lambda _{A}} g(x)H(x)dx + \int _{1}^{\frac{1}{\lambda _{A}}} g(x)H(x)dx - \frac{1}{6}\int _{1}^{\lambda _{A}} (x - x^{ - 3})H(x)dx $$
(B.1)

where \(H\) is given by

$$ H \equiv - \frac{3(n - 1)N}{x^{6} + x^{ - 6} + 1 - 3N} \ge 0, $$
(B.2)

and where \(g(x)\) is given by

$$ g(x) = \frac{\left ( x^{2} - 2 \right )\left ( 1 - x^{2} \right )x^{3}}{6}. $$
(B.3)

To evaluate \(K_{3}\), it proves convenient to combine the first and third integrals in (B.1) to get

$$ I_{3} \equiv - \frac{(n - 1)N}{2}\int _{1}^{\lambda _{A}} \frac{\left ( 3x^{5} - x^{7} - 2x^{3} - x + x^{ - 3} \right )dx}{x^{6} + x^{ - 6} + 1 - 3N}. $$
(B.4)

The second integral in (B.1) can be combined with (B.4) on using a change of variable and so one obtains the analog of (A.8) namely

$$ K_{3} = \frac{(n - 1)N}{2}\int _{1}^{\lambda _{A}} \frac{\left ( 3x^{ - 7} - 3x^{5} - x^{ - 9} - 2x^{ - 5} + x^{7} + 2x^{3} + x - x^{ - 3} \right )dx}{x^{6} + x^{ - 6} + 1 - 3N}. $$
(B.5)

This can be rewritten as

$$\begin{aligned} K_{3} = \frac{(n - 1)N}{2}\int _{1}^{\lambda _{A}} \frac{ - 3\left ( x^{5} - x^{ - 7} \right )dx}{x^{6} + x^{ - 6} + 1 - 3N} + \frac{(n - 1)N}{2}\int _{1}^{\lambda _{A}} \left ( x - x^{ - 3} \right )dx \\ + \frac{3(n - 1)N}{2}\int _{1}^{\lambda _{A}} \frac{x^{3} - x^{ - 5} + N\left ( x - x^{ - 3} \right )dx}{x^{6} + x^{ - 6} + 1 - 3N}. \end{aligned}$$
(B.6)

The first two integrals are readily evaluated to give

$$ K_{3} = \frac{(n - 1)N}{2}\left [ - \frac{1}{2}\ln \left ( \frac{9\psi ^{2}A^{2} + 6\psi ^{4}A^{4} + \psi ^{6}A^{6} - 3N + 3}{3 - 3N} \right ) + \frac{\psi ^{2}A^{2}}{2} + 3J_{1} \right ], $$
(B.7)

where \(J_{1}\) is given by

$$ J_{1} = \int _{1}^{\lambda _{A}} \frac{x^{3} - x^{ - 5} + N\left ( x - x^{ - 3} \right )dx}{x^{6} + x^{ - 6} + 1 - 3N}. $$
(B.8)

\(\alpha = 8\):

In this case, the analog of (B.5) is

$$ K_{4} = \frac{3(n - 1)N}{8}\int _{1}^{\lambda _{A}} \frac{\left ( 3x^{ - 9} - 3x^{7} - x^{ - 11} - 2x^{ - 7} + x^{9} + 2x^{5} + x - x^{ - 3} \right )dx}{x^{8} + x^{ - 8} + 1 - 3N}. $$
(B.9)

This can be rewritten as

$$\begin{aligned} K_{4} = \frac{3(n - 1)N}{8}\int _{1}^{\lambda _{A}} \frac{ - 3\left ( x^{7} - x^{ - 9} \right )dx}{x^{8} + x^{ - 8} + 1 - 3N} + \frac{3(n - 1)N}{8}\int _{1}^{\lambda _{A}} \left ( x - x^{ - 3} \right )dx \\ + \frac{9(n - 1)N}{8}\int _{1}^{\lambda _{A}} \frac{x^{5} - x^{ - 7} + N\left ( x - x^{ - 3} \right )dx}{x^{8} + x^{ - 8} + 1 - 3N}. \end{aligned}$$
(B.10)

Thus we obtain

$$\begin{aligned} K_{4} = {}&\frac{3(n - 1)N}{8}\left [ - \frac{3}{8}\ln \left ( \frac{16\psi ^{2}A^{2} + 20\psi ^{4}A^{4} + 8\psi ^{6}A^{6} + \psi ^{8}A^{8} - 3N + 3}{3 - 3N} \right ) \right. \\ &{}\left.+ \frac{\psi ^{2}A^{2}}{2} + 3J_{2} \right ] \end{aligned}$$
(B.11)

where \(J_{2}\) is given by

$$ J_{2} = \int _{1}^{\lambda _{A}} \frac{x^{5} - x^{ - 7} + N\left ( x - x^{ - 3} \right )dx}{x^{8} + x^{ - 8} + 1 - 3N}. $$
(B.12)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horgan, C.O. Pure Torsion for Stretch-Based Constitutive Models for Incompressible Isotropic Hyperelastic Soft Materials. J Elast (2024). https://doi.org/10.1007/s10659-024-10048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10659-024-10048-x

Keywords

Mathematics Subject Classification

Navigation