Skip to main content
Log in

Extensibility Effects on Euler Elastica’s Stability

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Based on the conjugate point theory in calculus of variations, the extensibility effects on the stability of Euler elasticas with one clamped end and the other clamped in rotation in the post-buckling are investigated. For a slender rod, it is shown that: (1) the buckling load is a little bigger than Euler critical load, (2) the addition of extensibility to the elastica does not affect its stability in the post-buckling, in the sense that those Euler elasticas with one inflexion point are stable while those Euler elasticas with more than one inflexion point are unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  2. Boissonnade, A.C.: Analytical Mechanics. Kluwer Academic, Dordrecht (1997). Translated from ‘Analytical mechanics’ written by J.L. Lagrange, 1788, Edited by Victor N. Vagliente

    MATH  Google Scholar 

  3. Bolza, O.: Lectures on the Calculus of Variations. University of Chicago Press, Chicago (1907)

    Google Scholar 

  4. Born, M.: Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen, vol. 1, pp. 5–101. Dieterichsche Universitäts-Buchdruckerei, Göttingen (1906). Reprinted Ausgewählte Abhandlungen. Mit einem Verzeichnis der wissenschaftlichen Schriften (Vandenhoeck und Ruprecht, Göttingen, 1963)

    Google Scholar 

  5. Domokos, G.: Global description of elastic bars. Z. Angew. Math. Mech. 74, T289–T291 (1994)

    Article  MATH  Google Scholar 

  6. Flilipich, C.P., Roales, M.B.: A further study on the postbuckling of extensible elastic rods. Int. J. Non-Linear Mech. 35, 997–1022 (2000)

    Article  Google Scholar 

  7. Gelfand, I.M., Fomin, S.V.: Calculus of Variations, pp. 115, 116. Prentice Hall, Englewood Cliffs (1963)

    Google Scholar 

  8. Hoffman, K.A., Manning, R.S.: An extended conjugate point theory with application to the stability of planar buckling of an elastic rod subject to a repulsive self-potential. SIAM J. Math. Anal. 41(2), 465–494 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holmes, P., Domokos, G., Heks, G.: Euler buckling in a potential field. J. Nonlinear Sci. 10, 477–505 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Jin, M., Bao, Z.B.: Sufficient conditions for stability of Euler elasticas. Mech. Res. Commun. 35, 193–200 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kamke, E.: Handbook on Ordinary Differential Equations. Teubner, Leipzig (1977). Chapters 18.7, 25.1 and 25.2

    Google Scholar 

  12. Kuznetsov, V.V., Levyakov, S.V.: Complete solution of the stability problem for elastica of Euler’s column. Int. J. Non-Linear Mech. 37, 1003–1009 (2002)

    Article  MATH  Google Scholar 

  13. Лаврентьев, М.А., Люстерник, Л.А., Курс Вариационного Исчисления, 2 изд., М., Л., Гостоптехиздат (1950). (Chapter 8.34)

  14. Levyakov, S.V.: Stability analysis of curvilinear configurations of an inextensible elastic rod with clamped ends. Mech. Res. Commun. 36, 612–617 (2009)

    Article  MATH  Google Scholar 

  15. Levyakov, S.V., Kuznetsov, V.V.: Stability analysis of planar equilibrium configurations of elastic rods subjected to end loads. Acta Mech. 211, 73–87 (2010)

    Article  MATH  Google Scholar 

  16. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn., pp. 399–406. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  17. Maddocks, J.H.: Stability of nonlinearly elastic rods. Arch. Ration. Mech. Anal. 85, 311–354 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Manning, R.S.: Conjugate points revisited and Neumann–Neumann problems. SIAM Rev. 51, 193–212 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Manning, R.S., Rogers, K.A., Maddocks, J.H.: Isoperimetric conjugate points with application to the stability of DNA minicircles. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 454, 3047–3074 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. O’Reilly, O.M., Peters, D.M.: On stability analyses of three classical buckling problems for the elastic strut. J. Elast. 105, 117–136 (2010)

    Article  MathSciNet  Google Scholar 

  21. Sachkov, Y.L.: Maxwell strata in the Euler elastic problem. J. Dyn. Control Syst. 14, 169–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sachkov, Y.L.: Conjugate points in the Euler elastic problem. J. Dyn. Control Syst. 14, 409–439 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sachkov, Y.L., Levyakov, S.V.: Stability of inflectional elasticae centered at vertices or inflection points. Proc. Steklov Inst. Math. 271, 177–192 (2010)

    Article  MathSciNet  Google Scholar 

  24. Smirnov, V.I.: A Course in Higher Mathematics. Pergamon, Oxford (1964). (Chapter 2). Translated by D.E. Brown, edited by I.N. Sneddon, vol. IV

    Google Scholar 

  25. Timoshenko, S.P.: History of Strength of Materials, pp. 38–39. McGraw-Hill, New York (1953). Chap. 2

    Google Scholar 

  26. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability, 2nd edn. McGraw-Hill, New York (1962). Chapter 2.7

    Google Scholar 

  27. Vaz, M.A., Silva, D.F.C.: Post-buckling analysis of slender elastic rods subjected to terminal forces. Int. J. Non-Linear Mech. 38, 483–492 (2003)

    Article  ADS  MATH  Google Scholar 

  28. Wang, C.T.: Applied Elasticity. McGraw-Hill, New York (1953). Chapter 9.3

    MATH  Google Scholar 

  29. Wang, C.Y.: Post buckling of a clamped-simply supported elastica. Int. J. Non-Linear Mech. 32, 1115–1122 (1997)

    Article  ADS  MATH  Google Scholar 

  30. Wu, B.: Secondary buckling of an elastic bar with a central elastic support. Mech. Res. Commun. 25, 479–486 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank reviewers for a deep and thoughtful review. The project was supported by the Opening Fund of State Key Laboratory of Nonlinear Mechanics (LNM) of Chinese Academy of Sciences through grant number LNM201003, the 973 Program of the National Science Foundation of China through grant number 2010CB7321004 and the Fund of Chinese Aviation Science through grant number 201109M5002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jin.

Appendix

Appendix

Suppose \(u'' = \frac{d^{2}u}{dx^{2}}\) and g(x) is a given function, then the exact solution of the initial value problem

$$ \left \{ \begin{array}{l} u'' + g ( x ) u = 0, \\[6pt] u ( 0 ) = 0,\qquad u' ( 0 ) = 1, \end{array} \right . $$
(30)

can be expressed analytically, see the book by Kamke [11],

$$ u = \rho ( x )\sin\alpha ( x ), $$
(31)

where α is a solution of the initial value problem

$$ \left \{ \begin{array}{l} \alpha' = \cos^{2}\alpha + g\sin^{2}\alpha, \\ \alpha(0) = 0, \\ \end{array} \right . $$
(32)

where \(\alpha' = \frac{d\alpha}{dx}. \rho( x )\) is

(33)

In Eqs. (31), (32) and (33), we can see that the zero point of u(x) in Eq. (30) corresponds to α=0,±π,±2π,… .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, M., Bao, Z.B. Extensibility Effects on Euler Elastica’s Stability. J Elast 112, 217–232 (2013). https://doi.org/10.1007/s10659-012-9407-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9407-0

Keywords

Mathematics Subject Classification (2000)

Navigation