Skip to main content
Log in

Conjugate Points in the Euler Elastic Problem

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

For the classical Euler elastic problem, conjugate points are described. Inflexional elasticas admit the first conjugate point between the first and third inflexion points. All other elasticas do not have conjugate points. As a result, the problem of stability of Euler elasticas is solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Agrachev, Geometry of optimal control problems and Hamiltonian systems. Lect. Notes Math. CIME 1932 Springer-Verlag (2008), pp. 1–59.

  2. A. A. Agrachev and Yu. L. Sachkov, Geometric control theory. Fizmatlit, Moscow (2004); English transl.: Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004).

    Google Scholar 

  3. V. I. Arnold, On a characteristic class entering quantization conditions. Funct. Anal. Appl. 1 (1967), No. 1, 1–14.

    Article  Google Scholar 

  4. V. I. Arnold and A. B. Givental, Symplectic geometry. Encycl. Math. Sci. 4 Springer-Verlag (1998), pp. 1–136.

  5. M. Born, Stabilität der elastischen Linie in Ebene und Raum. Preisschrift und Dissertation, Dieterichsche Universitäts-Buchdruckerei Göttingen (1906). Reprinted in: Ausgewählte Abhandlungen, Vol. 1, Vanderhoeck & Ruppert, Göttingen (1963), pp. 5–101.

  6. R. Brockett and L. Dai, Non-holonomic kinematics and the role of elliptic functions in constructive controllability. In: Nonholonomic Motion Planning (Z. Li and J. Canny, Eds.), Kluwer, Boston (1993), pp. 1–21.

    Google Scholar 

  7. L. Euler, Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimitrici latissimo sensu accepti. Lausanne, Geneva (1744).

    Google Scholar 

  8. D. F. Lawden, Elliptic functions and applications. Springer-Verlag (1989).

  9. A. E. H. Love, A treatise on the mathematical theory of elasticity. Dover, New York (1927).

    MATH  Google Scholar 

  10. Yu. L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem. Mat. Sb. 197 (2006), No. 6, 111–160.

    Google Scholar 

  11. ——, Maxwell strata in the Euler elastic problem. J. Dynam. Control Systems 14 (2008), No. 2, 169–234; available at arXiv:0705.0614 [math.OC], 3 May 2007.

    Article  MathSciNet  Google Scholar 

  12. ——, Exponential mapping in Euler’s elastic problem. In preparation.

  13. A. V. Sarychev, The index of second variation of a control system. Mat. Sb. 113 (1980), 464–486.

    MathSciNet  Google Scholar 

  14. E. T. Whittaker and G. N. Watson, A course of modern analysis. Cambridge Univ. Press, Cambridge (1996).

    MATH  Google Scholar 

  15. S. Wolfram, Mathematica: A system for doing mathematics by computer. Addison-Wesley, Reading (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. L. Sachkov.

Additional information

This work was supported by the Russian Foundation for Basic Research, project No. 06-01-00330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachkov, Y.L. Conjugate Points in the Euler Elastic Problem. J Dyn Control Syst 14, 409–439 (2008). https://doi.org/10.1007/s10883-008-9044-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-008-9044-x

2000 Mathematics Subject Classification.

Key words and phrases

Navigation