Skip to main content
Log in

Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas mediterranea

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In this study, the Pseudomonas corrugata strain CFBP 5454 and the P. mediterranea strain CFBP 5447 were shown to produce diffusible compounds that inhibit the in vitro growth of plant pathogenic fungi and bacteria and antifungal volatile compounds. In addition, both bacterial strains were found to produce cyanide. Mutant derivatives in LuxR transcriptional regulators, i.e. P. corrugata GL2 (pcoR mutant) and GLRFIA (rfiA mutant), and P. mediterranea PSMER (pmeR mutant) and PSRFIA (rfiA mutant) impaired in cyclic lipopeptide (CLP) production, showed a diffusible compound-mediated reduced activity, depending on the biocontrol strain, challenge microorganism and culture medium. The volatile compound-mediated activity and cyanide production were not affected in the mutants. Genome analysis of the P. corrugata strain CFBP 5454 led to the identification of putative genes involved in the hydrogen cyanide (HCN) biosynthesis. HCN is a volatile organic compound (VOC), and as in other Pseudomonas, the HCN cluster consisted of three contiguous structural genes, hcnABC, which together encoded a membrane-bound HCN synthase complex, which was sufficient for cyanogenesis. The putative hcnA gene was insertionally inactivated. A genomic mutant was characterized, and the role of this compound in biocontrol activity was investigated. A qualitative test for the detection of HCN production confirmed that in the hcnA mutant strain, metabolite production is completely abolished. In vitro experiments on the phytopathogenic fungus Botrytis cinerea also showed that HCN production is mainly involved in conidia germination inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexeyev, M. F. (1999). The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. BioTechniques, 26(5), 824–827.

    CAS  PubMed  Google Scholar 

  • Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134(1), 307–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender, C. L., Alarcón-Chaidez, F., & Gross, D. C. (1999). Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiology and Molecular Biology Reviews, 63(2), 266–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry, C., Fernando, W. G., Loewen, P. C., & De Kievit, T. R. (2010). Lipopeptides are essential for Pseudomonas sp. DF41 biocontrol of Sclerotinia sclerotiorum. Biological Control, 55(3), 211–218.

    Article  CAS  Google Scholar 

  • Berti, A. D., Greve, N. J., Christensen, Q. H., & Thomas, M. G. (2007). Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. Journal of Bacteriology, 189(17), 6312–6323.

  • Blumer, C., & Haas, D. (2000). Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Microbiology, 146(10), 2417–2424.

    Article  CAS  PubMed  Google Scholar 

  • Brimecombe, M. J., De Liej, F. A., & Lynch, J. M. (2001). The effect of root exudates on rhizosphere microbial populations. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere (pp. 95–140). New York: Marcel Dekker.

    Google Scholar 

  • Catara, V. (2007). Pseudomonas corrugata: plant pathogen and/or biological resource? Molecular Plant Pathology, 8(3), 233–244.

    Article  CAS  PubMed  Google Scholar 

  • Catara, V., Arnold, D., Cirvilleri, G., & Vivian, A. (2000). Specific oligonucleotide primers for the rapid identification and detection of the agent of tomato pith necrosis, Pseudomonas corrugata, by PCR amplification: evidence for two distinct genomic groups. European Journal of Plant Pathology, 106(8), 753–762.

    Article  CAS  Google Scholar 

  • Catara, V., Sutra, L., Morineau, A., Achouak, W., Christen, R., & Gardan, L. (2002). Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov. International Journal of Systematic and Evolutionary Microbiology, 52(5), 1749–1758.

    CAS  PubMed  Google Scholar 

  • Cirvilleri, G., Bella, P., & Catara, V. (2001). Biocontrol activity in plant pathogenic Pseudomonas species. In: Proceedings 5th Congress of the European Foundation for Plant Pathology (pp. 534–538).

  • De Bruijn, I., & Raaijmakers, J. M. (2009). Diversity and functional analysis of LuxR-type transcriptional regulators of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens. Applied and Environmental Microbiology, 75(14), 4753–4761.

  • Dubern, J. F., Coppoolse, E. R., Stiekema, W. J., & Bloemberg, G. V. (2008). Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445. Microbiology, 154(7), 2070–2083.

  • Emanuele, M. C., Scaloni, A., Lavermicocca, P., Jacobellis, N. S., Camoni, L., Di Giorgio, D., et al. (1998). Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata. FEBS Letters, 433(3), 317–320.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, W. G., Ramarathnam, R., Krishnamoorthy, A. S., & Savchuk, S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry, 37(5), 955–964.

    Article  CAS  Google Scholar 

  • Figurski, D. H., & Helinski, D. R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences, 76(4), 1648–1652.

    Article  CAS  Google Scholar 

  • Garbeva, P., Van Overbeek, L. S., Van Vuurde, J. W. L., & Van Elsas, J. D. (2001). Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecology, 41(4), 369–383.

    Article  CAS  PubMed  Google Scholar 

  • Gross, H., & Loper, J. E. (2009). Genomics of secondary metabolite production by Pseudomonas spp. Natural Product Reports, 26(11), 1408–1446.

    Article  CAS  PubMed  Google Scholar 

  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Herrero, M., de Lorenzo, V., & Timmis, K. N. (1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. Journal of Bacteriology, 172(11), 6557–6567.

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine, 44, 301–307.

    CAS  PubMed  Google Scholar 

  • Kruijt, M., Tran, H., & Raaijmakers, J. M. (2009). Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. Journal of Applied Microbiology, 107(2), 546–556.

    Article  CAS  PubMed  Google Scholar 

  • Latoud, C., Peypoux, F., & Michel, G. (1990). Interaction of iturin a, a lipopeptide antibiotic, with Saccharomyces cerevisiae cells: influence of the sterol membrane composition. Canadian Journal of Microbiology, 36(6), 384–389.

    Article  CAS  PubMed  Google Scholar 

  • Lavermicocca, P., Sante Iacobellis, N., Simmaco, M., & Graniti, A. (1997). Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiological and Molecular Plant Pathology, 50(2), 129–140.

    Article  CAS  Google Scholar 

  • Laville, J., Blumer, C., Von Schroetter, C., Gaia, V., Défago, G., Keel, C., & Haas, D. (1998). Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology, 180(12), 3187–3196.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Licciardello, G., Bertani, I., Steindler, L., Bella, P., Venturi, V., & Catara, V. (2007). Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato pathogenicity and tobacco hypersensitivity response. FEMS Microbiology Ecology, 61(2), 222–234.

    Article  CAS  PubMed  Google Scholar 

  • Licciardello, G., Bertani, I., Steindler, L., Bella, P., Venturi, V., & Catara, V. (2009). The transcriptional activator rfiA is quorum-sensing regulated by cotranscription with the luxI homolog pcoI and is essential for plant virulence in Pseudomonas corrugata. Molecular Plant-Microbe Interactions, 22(12), 1514–1522.

    Article  CAS  PubMed  Google Scholar 

  • Licciardello, G., Bella, P., & Catara, V. (2011). Quantitative detection of Pseudomonas corrugata and Pseudomonas mediterranea in tomato plants by duplex real-time pcr. Journal of Plant Pathology, 93, 595–602.

    CAS  Google Scholar 

  • Licciardello, G., Strano, C. P., Bertani, I., Bella, P., Fiore, A., Fogliano, V., Venturi, V., & Catara, V. (2012). N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. Journal of Biotechnology, 159(4), 274–282.

    Article  CAS  PubMed  Google Scholar 

  • Licciardello, G., Jackson, R. W., Bella, P., Strano, C. P., Catara, A. F., Arnold, D. L., Venturi, V., Silby, M. W., & Catara, V. (2014a). Draft genome sequence of Pseudomonas corrugata, a phytopathogenic bacterium with potential industrial applications. Journal of Biotechnology, 175, 65–66.

    Article  CAS  PubMed  Google Scholar 

  • Licciardello, G., Bella, P., Devescovi, G., Strano, C. P., Sarris, P. F., Catara, A. F., et al. (2014b). Draft genome sequence of Pseudomonas mediterranea strain CFBP 5447 T, a producer of filmable medium-chain-length polyhydroxyalkanoates. Genome Announcements, 2(6), e01260–e01214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo Cantore, P., Lazzaroni, S., Coraiola, M., Serra, M. D., Cafarchia, C., Evidente, A., & Iacobellis, N. S. (2006). Biological characterization of white line-inducing principle (WLIP) produced by Pseudomonas reactans NCPPB1311. Molecular Plant-Microbe Interactions, 19(10), 1113–1120.

    Article  CAS  PubMed  Google Scholar 

  • Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis II, E. W., Lim, C. K., Shaffer, B. T., et al. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genetics, 8(7), e1002784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, S. E., Scholz-Schroeder, B. K., & Gross, D. C. (2002). Characterization of the salA, syrF, and syrG regulatory genes located at the right border of the syringomycin gene cluster of Pseudomonas syringae pv. syringae. Molecular Plant-Microbe Interactions, 15(1), 43–53.

  • Mazzola, M., Zhao, X., Cohen, M. F., & Raaijmakers, J. M. (2007). Cyclic lipopeptide surfactant production by Pseudomonas fluorescens SS101 is not required for suppression of complex Pythium spp. populations. Phytopathology, 97(10), 1348–1355.

    Article  CAS  PubMed  Google Scholar 

  • Michelsen, C. F., & Stougaard, P. (2012). Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium. Canadian Journal of Microbiology, 58(4), 381–390.

    Article  CAS  PubMed  Google Scholar 

  • Montesinos, E. (2007). Antimicrobial peptides and plant disease control. FEMS Microbiology Letters, 270(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Nybroe, O., & Sørensen, J. (2004). Production of cyclic lipopeptides by fluorescent pseudomonads. In Pseudomonas (pp. 147–172). US: Springer.

    Chapter  Google Scholar 

  • Paulsen, I. T., Press, C. M., Ravel, J., Kobayashi, D. Y., Myers, G. S. A., et al. (2005). Complete genome sequence of the plant commensal Pseudomonas fluorescens pf-5. Nature Biotechnology, 23, 873–878.

    Article  CAS  PubMed  Google Scholar 

  • Pessi, G., & Haas, D. (2000). Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. Journal of Bacteriology, 182(24), 6940–6949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers, J. M., & Mazzola, M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50, 403–424.

    Article  CAS  PubMed  Google Scholar 

  • Ramette, A., Frapolli, M., Défago, G., & Moënne-Loccoz, Y. (2003). Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Molecular Plant-Microbe Interactions, 16(6), 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Risse, D., Beiderbeck, H., Taraz, K., Budzikiewicz, H., & Gustine, D. (1998). Corrugatin, a lipopeptide siderophore from Pseudomonas corrugata. Zeitschrift für Naturforschung. C. A Journal of Biosciences, 53(5–6), 295–304.

    CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning (Vol. 2). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Scaloni, A., Dalla Serra, M., Amodeo, P., Mannina, L., Vitale, R., Segre, et al. (2004). Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: cormycin A1. Biochemical Journal, 384, 25–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarlett, C. M., Fletcher, J. T., Roberts, P., & Lelliott, R. A. (1978). Tomato pith necrosis caused by Pseudomonas corrugata n. Sp. Annals of Applied Biology, 88(1), 105–114.

    Article  Google Scholar 

  • Strano, C. P., Bella, P., Licciardello, G., Fiore, A., Lo Piero, A. R., Fogliano, V., et al. (2015). Pseudomonas corrugata crpCDE is part of the cyclic lipopeptide corpeptin biosynthetic gene cluster and is involved in bacterial virulence in tomato and in hypersensitive response in Nicotiana benthamiana. Molecular Plant Pathology, 16(5), 495–506.

    Article  CAS  PubMed  Google Scholar 

  • Sutra, L., Siverio, F., Lopez, M. M., Hanault, G., Bollet, C., & Gardan, L. (1997). Taxonomy of Pseudomonas strains isolated from tomato pith necrosis: emended description of Pseudomonas corrugata and proposal of three unnamed fluorescent Pseudomonas genomo-species. International Journal of Systematic and Evolutionary Microbiology, 47, 1020–1033.

    CAS  Google Scholar 

  • Tran, H., Ficke, A., Asiimwe, T., Höfte, M., & Raaijmakers, J. M. (2007). Role of the cyclic lipopeptide massetolide a in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytologist, 175(4), 731–742.

    Article  CAS  PubMed  Google Scholar 

  • Trantas, E. A., Licciardello, G., Almeida, N. F., Witek, K., Strano, C. P., Duxbury, Z., Ververidis, F., Goumas, D. E., Jones, J. D. G., Guttman, D. S., Catara, V., & Sarris, P. F. (2015). Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Frontiers in Microbiology, 6, 811. doi:10.3389/fmicb.2015.00811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi, P., Pandey, A., & Palni, L. M. S. (2008). In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiological Research, 163(3), 329–336.

    Article  PubMed  Google Scholar 

  • Vincent, J. M. (1947). Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159(4051), 850.

    Article  CAS  PubMed  Google Scholar 

  • Voisard, C., Keel, C., Haas, D., & Dèfago, G. (1989). Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. The EMBO Journal, 8(2), 351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, N., Lu, S. E., Records, A. R., & Gross, D. C. (2006). Characterization of the transcriptional activators SalA and SyrF, which are required for syringomycin and syringopeptin production by Pseudomonas syringae pv. syringae. Journal of Bacteriology, 188(9), 3290–3298.

  • Wissing, F. R. O. D. E., & Andersen, K. S. (1981). The enzymology of cyanide production from glycine by a Pseudomonas species. Solubilization of the enzyme. Cyanide in Biology. Academic: London, 275–287.

Download references

Acknowledgements

We would like to thank P. Lavermicocca (Istituto di Tossine e Micotossine da Parassiti Vegetali, C.N.R., Bari, Italy), for providing Bacillus megaterium, C. Oliveri (University of Catania), for Penicillum digitatum PVCT235 and T. Arie (Tokyo University of Agriculture and Technology -TUAT, Fuchu, Japan), for Fusarium oxysporum f.sp. lycopersici (Saitama ly1). This work was supported by the project “PolyBioPlast” PON01 01377 funded by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca, Italy) and MISE (Ministero dello Sviluppo Economico) and cofunded by EU (PON 2007–2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Patricia Strano.

Electronic supplementary material

ESM 1

(PPTX 6043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strano, C.P., Bella, P., Licciardello, G. et al. Role of secondary metabolites in the biocontrol activity of Pseudomonas corrugata and Pseudomonas mediterranea . Eur J Plant Pathol 149, 103–115 (2017). https://doi.org/10.1007/s10658-017-1169-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1169-x

Keywords

Navigation