Skip to main content

Production of Cyclic Lipopeptides by Fluorescent Pseudomonads

  • Chapter
Pseudomonas

Abstract

Members of the genus Pseudomonas produce a large amount of metabolites that are released into the extracellular environment. Among these metabolites are siderophores, phytohormones, biosurfactants and several antibiotic compounds, which may have broad-spectrum activity24, 81. Production of cyclic lipopeptides (CLPs) including compounds referred to as lipodepsipeptides, lipoundecapeptides and so on, has recently been established as a common trait among the pseudomonads. However, CLPs are also produced by a variety of other bacteria as well as fungi. Among the bacterial metabolites the CLP surfactin produced by Bacillus subtilis has received large attention due to its powerful biosurfactant activity and the antifungal, antibacterial and antiviral effects78.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agner, G., Kaulin, Y.A., Gurnev, P.A., Szabo, Z., Schagina, L.V, Takemoto, J.Y., and Blasko, K., 2000, Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human blood cells and in bilayer lipid membranes. Bioelectrochemistry, 52:161–167.

    Article  PubMed  CAS  Google Scholar 

  2. Andersen, J.B., Koch, B., Nielsen, T.H., Sørensen, D., Hansen, M., Nybroe, O., Christophersen, C., Sørensen, J., Molin, S., and Givskov, M., 2003, Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology-SGM, 149:37–46.

    Article  CAS  Google Scholar 

  3. Ballio, A., Bossa, F., Di Giorgio, D., Ferranti, P., Paci, M., Pucci, P., Scaloni, A., Segre, A., and Strobel, G.A., 1994, Novel bioactive lipodepsipeptides from Pseudomonas syringae— The pseudomycins. FEBS Lett., 355:96–100.

    Article  PubMed  CAS  Google Scholar 

  4. Ballio, A., Collina, A., Di Nola, A., Manetti, C., Paci, M, and Segre, A., 1994, Determination of structure and conformation in solution of syringotoxin, a lipodepsipeptide from Pseudomonas syringae pv. syringae by 2D NMR and molecular dynamics. Struct. Chem., 5:43–50.

    Article  CAS  Google Scholar 

  5. Ballio, A., Bossa, F., Di Giorgio, D., Di Nola, A., Manetti, C., Paci, M., Scaloni, A., and Segre, A.L., 1995, Solution conformation of the Pseudomonas syringae pv. syringae phytotoxic lipodepsipeptide syringopeptin 25-A. Two-dimensional NMR, distance geometry and molecular dynamics. Eur. J. Biochem., 234:747–758.

    Article  PubMed  CAS  Google Scholar 

  6. Ballio, A., Bossa, F., Camoni, L., Di Giorgio, D., Flamand, M.-C., Maraite, H., Nitti, G., Pucci, P., and Scaloni, A., 1996, Structure of fuscopeptins, phytotoxic metabolites of Pseudomonas fuscovaginae. FEBS Lett., 381:213–216.

    Article  PubMed  CAS  Google Scholar 

  7. Banat, I.M., Makkar, R.S., and Cameotra, S.S., 2000, Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol., 53:495–508.

    Article  PubMed  CAS  Google Scholar 

  8. Baré, S., Coiro, VM., Scaloni, A., Di Nola, A., Paci, M., Segre, A.L., and Ballio, A., 1999, Conformation in solution of the fuscopeptins. Eur. J. Biochem., 266:484–492.

    Article  PubMed  Google Scholar 

  9. Batoko, H., de Kerchove d’Exaerde, A., Kinet, J.-M., Bouharmont, J., Gage, R.A., Maraite, H., and Boutry, M., 1998, Modulation of plant plasma membrane H+-ATPase by phytotoxic lipodepsipeptides produced by the plant pathogen Pseudomonas fuscovaginae. Biochim. Biophys. Acta, 1372:216–226.

    Article  PubMed  CAS  Google Scholar 

  10. Bender, CL., Alarcón-Chaidez, F., and Gross, D.C., 1999, Pseudomonas syringae phytotox-ins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev., 63:266–292.

    PubMed  CAS  Google Scholar 

  11. Braun, P.G., Hildebrand, P.D., Ells, T.C., and Kobayashi, D.Y., 2001, Evidence and characterization of a gene cluster required for the production of viscosin, a lipopeptide biosurfactant, by a strain of Pseudomonas fluorescens. Can. J. Microbiol., 47:294–301.

    PubMed  CAS  Google Scholar 

  12. Brodey, C.L., Rainey, P.B., Tester, M, and Johnstone, K., 1991, Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol. Plant-Microbe Interact., 4:407–411.

    Article  CAS  Google Scholar 

  13. Buber, E., Stindl, A., Acan, N.L., Kocagoz, T., and Zocher, R., 2002, Antimycobacterial activity of lipodepsipeptides produced by Pseudomonas syringae pv. syringae B359. Nat. Prod. Lett., 16:419–423.

    Article  PubMed  CAS  Google Scholar 

  14. Bull, CT., Wadsworth, M.L., Sorensen, K.N., Takemoto, J.Y., Austin, R.K., and Smilanick, J.L., 1998, Syringomycin E produced by biological control agents controls green mold on lemons. Biol. Control, 12:89–95.

    Article  Google Scholar 

  15. Bull, CT., Duffy, B., Voisard, C., Defago, G., Keel, C., and Haas, D., 2001, Characterization of spontaneous gacS and gacA regulatory mutants of Pseudomonas fluorescens biocontrol strain CHA0. Antonie van Leeuwenhooek, 79:327–336.

    Article  CAS  Google Scholar 

  16. Bultreus, A. and Gheysen, I., 1999, Biological and molecular detection of toxic lipodep-sipeptide-producing Pseudomonas syringae strains and PCR identification in plants. Appl. Environ. Microbiol., 65:1904–1909.

    Google Scholar 

  17. Camoni, L., Di Giorgio, D., Marra, M., Aducci, P., and Ballio, A., 1995, Pseudomonas syringae pv. syringae phytotoxins reversibly inhibit the plasma membrane H+-ATPase and disrupt unilamellar liposomes. Biochem. Biophys. Res. Comm., 214:118–124.

    Article  PubMed  CAS  Google Scholar 

  18. Coiro, VM., Segra, A.L., Di Nola, A., Paci, M., Grottesi, A., Veglia, G., and Ballio, A., 1998, Solution conformation of the Pseudomonas syringae MSU16H phytotoxic lipodepsipeptide pseudomycin A determined by computer simulations using distance geometry and molecular dynamics from NMR data. Eur. J. Biochem., 257:449–456.

    Article  PubMed  CAS  Google Scholar 

  19. Dalla Serra, M., Bernhart, I., Nordera, P., Di Giorgio, D., Ballio, A., and Menestrina, G., 1999, Conductive properties and gating of channels formed by syringopeptin 25A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes. Mol. Plant-Microbe Interact., 12:401–409.

    Article  PubMed  CAS  Google Scholar 

  20. Dalla Serra, M., Fagiuoli, G., Nordera, P., Bernhart, I., Delia Volpe, C., Di Giorgio, D., Ballio, A., and Menestrina, G., 1999, The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: A comparison of syringotoxins, syringomycins, and two syringopeptins. Mol. Plant-Microbe Interact., 12:391–400.

    Article  PubMed  CAS  Google Scholar 

  21. De Lucca, A.J., Jacks, T.J., Takemoto, J., Vinyard, B., Peter, J., Navarro, E., and Walsh, T.J., 1999, Fungal lethality, binding and cytotoxicity of syringomycin-E. Antimicrob. Agents Chemother., 43:371–373.

    PubMed  Google Scholar 

  22. Di Giorgio, D., Camoni, L., Marchiafava, C., and Ballio, A., 1997, Biological activities of pseudomycin A, a lipodepsinonapeptide from Pseudomonas syringae MSU16H. Phytochemistry, 45:1385–1391.

    Article  PubMed  Google Scholar 

  23. Doekel, S. and Marahiel, M.A., 2001, Biosynthesis of natural products on modular peptide synthetases. Metabol Eng., 3:64–77.

    Article  CAS  Google Scholar 

  24. Dowling, D.N. and O’Gara, F., 1994, Metabolites of Pseudomonas involved in the biocontrol of plant disease. TIBTECH, 12:133–141.

    Article  CAS  Google Scholar 

  25. El Sayed, K.A., Bartyzel, P., Shen, X., Perry, T.L., Zjawiony, J.K., and Hamann, M.T., 2000, Marine natural products as antituberculosis agents. Tetrahedron, 56:949–953.

    Article  Google Scholar 

  26. Emanuele, M.C., Scaloni, A., Lavermicocca, P., Iacobellis, N.S., Camoni, L., Di Giorgio, D, Pucci, P., Paci, M., Segre, A., and Ballio, A., 1998, Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata. FEBS Lett., 433:317–320.

    Article  PubMed  CAS  Google Scholar 

  27. Flamand, M.-C., Pellser, S., Ewbank, E., and Maraite, H., 1996, Production of syringotoxin and other bioactive peptides by Pseudomonas fuscovaginae. Physiol. Mol. Plant Pathol., 48:217–231.

    Article  CAS  Google Scholar 

  28. Fogliano, V, Gallo, M., Vinale, F., Ritieni, A., Randazzo, G., Greco, M., Lops, R., and Graniti, A., 1999, Immunological detection of syringopeptins produced by Pseudomonas syringae pv. lachrymans. Physiol. Mol. Plant Pathol., 55:255–261.

    Article  CAS  Google Scholar 

  29. Fogliano, V, Ballio, A., Gallo, M, Woo, S., Scala, F., and Lorito, M., 2002, Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Mol. Plant-Microbe Interact., 15:323–333.

    Article  PubMed  CAS  Google Scholar 

  30. Fukuchi, N., Isogai, A., Nakayama, J., Takayama, S., Yamashita, S., Suyama, K., and Suzuki, A., 1992, Structure and stereochemistry of three phytotoxins, syringomycin, syringotoxin and syringostatin produced by Pseudomonas syringae pv. syringae. J. Chem. Soc. Perkin Trans. I, 1149–1157.

    Google Scholar 

  31. Gerard, I, Lloyd, R., Barsby, T., Haden, P., Kelly, M.T., and Andersen, R.J., 1997, Massetolids A-H, Antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J. Nat. Prod., 60:223–229.

    Article  PubMed  CAS  Google Scholar 

  32. Godfrey, S.A.C., Marshall, J.W., and Klena, J.D., 2001, Genetic characterization of Pseudomonas ‘NZ17’—a novel pathogen that results in a brown blotch disease of Agaricus bisporus. J.Appl. Microbiol., 91:412–420.

    Article  PubMed  CAS  Google Scholar 

  33. Grangemard, I., Wallach, J., Maget-Dana, R., and Peypoux, F., 2001, Lichenysin—A more efficient cation chelator than surfactin. Appl. Biochem. Biotech., 90:199–210.

    Article  CAS  Google Scholar 

  34. Grewal, S.I.S., Han, B., and Johnstone, K., 1995, Identification and characterization of a locus which regulates multiple functions in Pseudomonas tolaasii, the cause of brown blotch disease of Agaricus bisporus. J. Bacteriol., 177:4658–4668.

    PubMed  CAS  Google Scholar 

  35. Grgurina, I., Gross, D.C., Iacobellis, N.S., Lavermicocca, P., Takemoto, J.Y., and Benincasa, M., 1996, Phytotoxin production by Pseudomonas syringae pv. syringae: Syringopeptin production by syr mutants defective in biosynthesis or secretion of syringomycin. FEMS Microbiol. Lett., 138:35–39.

    Article  CAS  Google Scholar 

  36. Grgurina, I., Mariotti, F., Fogliano, V., Gallo, M., Scaloni, A., Iacobellis, N.S., Lo Cantore, P., Mannina, L., van Axel Castelli, V., Grego, M.L., and Graniti, A., 2002, A new syringopeptin produced by bean strains of Pseudomonas syringae pv. syringae. Biochim. Biophys. Acta, 1597:81–89.

    Article  PubMed  CAS  Google Scholar 

  37. Gross, D.C., 1985, Regulation of syringomycin synthesis in Pseudomonas syringae pv. syringae and defined conditions for its production. J. Appl. Bacteriol., 58:167–174.

    Article  PubMed  CAS  Google Scholar 

  38. Groupé, V., Pugh, L.H., Weiss, D., and Kochi, M., 1951, Observations on the antiviral activity of viscosin. P. Soc. Exp. Biol. Med., 78:354–358.

    Google Scholar 

  39. Guenzi, E., Galli, G., Grgurina, I., Gross, D.C., and Grandi, G., 1998, Characterization of the syringomycin synthetase gene cluster. J. Biol. Chem., 273:32857–32863.

    Article  PubMed  CAS  Google Scholar 

  40. Han, B., Pain, A., and Johnstone, K., 1997, Spontaneous duplication of a 661 bp element within a two-component sensor regulator gene causes phenotypic switching in colonies of Pseudomonas tolaasii, cause of brown blotch disease of mushrooms. Mol. Microbiol., 25:211–218.

    Article  PubMed  CAS  Google Scholar 

  41. Han, F., Mortishire-Smith, R.J., Rainey, PB., and Williams, D.H., 1992, Structure of the white-line inducing principle isolated from Pseudomonas reactans. Acta Cryst., C48:1965–1968.

    Article  Google Scholar 

  42. Hansen, M., Thrane, C., Olsson, S., and Sørensen, J., 2000, Confocal imaging of living fungal hyphae challenged with the fungal antagonist viscosinamide. Mycologia, 92:216–221.

    Article  Google Scholar 

  43. Heeb, S. and Haas, D., 2001, Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol. Plant-Microbe Interact., 14:1351–1363.

    Article  PubMed  CAS  Google Scholar 

  44. Henriksen, A., Anthoni, U., Nielsen, T.H., Sørensen, J., Christophersen, C., and Gajhede, M., 2000, Cyclic lipoundecapeptide tensin from Pseudomonas fluorescens strain 96.578. Acta Cryst., C56:113–115.

    Article  Google Scholar 

  45. Hildebrand, P.D., 1989, Surfactant-like characteristics and identity of bacteria associated with broccoli head rot in Atlantic Canada. Can. J. Plant Path., 11:205–214.

    Article  Google Scholar 

  46. Hildebrand, P.D., Braun, P.G., McRae, K.B., and Lu, X., 1998, Role of the biosurfactant viscosin in broccoli head rot caused by a pectolytic strain of Pseudomonas fluorescens. Can. J. Plant. Pathol., 20:296–303.

    Article  CAS  Google Scholar 

  47. Hrabak, E.M. and Willis, D.K., 1992, The lemA gene required for pathogenecity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J. Bacteriol., 174:3011–3020.

    PubMed  CAS  Google Scholar 

  48. Hu, F.-P., Young, J.M., and Fletcher, M.J., 1998, Preliminary description of biocidal (syringomycin) activity in fluorescent plant pathogenic Pseudomonas species. J. Appl. Microbiol., 85:357–364.

    Article  Google Scholar 

  49. Hutchison, M.L., Tester, M.A., and Gross, D.C., 1995, Role of biosurfactant and ion-channel-forming activities of syringomycin in transmembrane ion flux—a model for the mechanism of action in the plant-pathogen interaction. Mol. Plant-Microbe Interact., 8:610–620.

    Article  PubMed  CAS  Google Scholar 

  50. Hutchison, M.L. and Gross, D.C., 1997, Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: Comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. Mol. Plant-Microbe Interact., 10:347–354.

    Article  PubMed  CAS  Google Scholar 

  51. Ivanova, E.P., Gorshkova, N.M., Sawabe, T., Hayashi, K., Kalinovskaya, N.I., Lysenko, A.M., Zhukova, N.V, Nicolau, D.V, Kuznetsova, T.A., Mikhailov, V.V, and Christen, R., 2002, Pseudomonas extremorientalis sp. nov., isolated from a drinking water reservoir. Int. J. Syst. Evol. Microbiol., 52:2113–2130.

    Article  PubMed  CAS  Google Scholar 

  52. Keel, C., Weiler, D.M., Natsch, A., Défago, G., Cook, R.J., and Thomashow, L.S., 1996, Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl. Environ. Microbiol., 62:552–563.

    PubMed  CAS  Google Scholar 

  53. Koch, B., Nielsen, T.H., Sørensen, D., Andersen, J.B., Christophersen, C., Molin, S., Givskov, M., Sørensen, J., and Nybroe, O., 2002, Lipopeptide production in Pseudomonas sp. strain DSS73 is regulated by components of sugar beet seed exudates via the Gac two-component regulatory system. Appl. Environ. Microbiol., 68:4509–4516.

    Article  PubMed  CAS  Google Scholar 

  54. Konz, D. and Marahiel, M.A., 1999, How do peptide synthetases generate structural diversity. Chem. Biol., 6:R39–R48.

    Article  PubMed  CAS  Google Scholar 

  55. Lang, S., 2002, Biological amphiphiles (microbial biosurfactants). Curr. Opin. Coll. Interface Sci., 7:12–20.

    Article  CAS  Google Scholar 

  56. Lavermicocca, P., Sante Iacobellis, N., Simmaco, M., and Graniti, A., 1997, Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiol. Mol. Plant Pathol., 50:129–140.

    Article  CAS  Google Scholar 

  57. Laycock, M.V, Hildebrand, P.D., Thibault, P., Walter, J.A., and Wright, J.L.C., 1991, Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J. Agric. Food Chem., 39:483–489.

    Article  CAS  Google Scholar 

  58. Lee, H.-L, Jeong, K.-S., and Cha, J.-S., 2002, PCR assays for specific and sensitive detection of Pseudomonas tolaasii, the cause of brown blotch disease of mushrooms. Lett. Appl. Microbiol., 35:276–280.

    Article  PubMed  CAS  Google Scholar 

  59. Lindow, S.E. and Brandi, M.T., 2003, Microbiology of the phyllosphere. Appl Environ. Microbiol., 69:1875–1883.

    Article  PubMed  CAS  Google Scholar 

  60. Matsuyama, T. and Nakagawa, Y., 1996, Bacterial wetting agents working in colonization of bacteria on surface environments. Coll Surf. B, 7:207–214.

    Article  CAS  Google Scholar 

  61. Miller, CM., Miller, R.V, Garton-Kenny, D., Redgrave, B., Sears, J., Condron, M.M., Teplow, D.B., and Strobel, G.A., 1998, Ecomycins, unique antimycotics from Pseudomonas viridi-flava. J. Appl. Microbiol., 84:937–944.

    Article  PubMed  CAS  Google Scholar 

  62. Mo, Y.-Y and Gross, D.C., 1991, Plant signal molecules activate the syrB gene, which is required for syringomycin production by Pseudomonas syringae pv. syringae. J. Bacteriol., 173:5784–5792.

    PubMed  CAS  Google Scholar 

  63. Mo, Y.-Y, Geibel, M., Bonsall, R.F., and Gross, D.C., 1995, Analysis of sweet cherry (Prunus avium L.) leaves for plant signal molecules that activate the syrB gene required for synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv. syringae. Plant Physiol., 107:603–612

    PubMed  CAS  Google Scholar 

  64. Monti, S.M., Gallo, M., Ferracane, R., Borrelli, R.C., Ritieni, A., Greco, M.L., Graniti, A., and Fogliano, V., 2001, Analysis of bacterial lipodepsipeptides by matrix-assisted laser desorption/ionisation time-of-flight and high-performance liquid chromatography with electrospray mass spectrometry. Rapid Commun. Mass Spectrom., 15:623–628

    Article  PubMed  CAS  Google Scholar 

  65. Morikawa, M., Hirata, Y, and Imanaka, T., 2000, A study of the structure-function relation-ship of lipopeptide surfactants. Biochim. Biophys. Acta, 1488:211–218

    Article  PubMed  CAS  Google Scholar 

  66. Mortishire-Smith, R.J., Drake, A.F., Nutkins, J.C., and Williams, D.H., 1991, Left-handed a-helix formation by a bacterial peptide. FEBS Lett, 278:244–246

    Article  PubMed  CAS  Google Scholar 

  67. Mortishire-Smith, R.J., Nutkins, J.C., Packman, L.C., Brodey, C.L., Rainey, P.B., Johnstone, K., and Williams, D.H., 1991, Determination of the structure of an extracellular peptide produced by the mushroom pathogen saphrotroph Pseudomonas reactans. Tetrahedron, 47:3645–3654

    Article  CAS  Google Scholar 

  68. Mulligan, C.N., Young, R.N., and Gibbs, B.F., 2001, Heavy metal removal from sediments by biosurfactants. J. Hazard. Mat., 85:111–125

    Article  CAS  Google Scholar 

  69. Munsch, P. and Alatossava, T., 2002, The white-line-in-agar test is not specific for the two cultivated mushroom associated psedomonads, Pseudomonas tolaasii and Pseudomonas ‘reactans’. Microbiol Res., 157:7–11

    Article  PubMed  Google Scholar 

  70. Munsch, P., Alatossava, T., Marttinen, N., Meyer, J.-M., Christen, R., and Gardan, L., 2002, Pseudomonas costantinii sp. nov, another causal agent of brown blotch disease, isolated from cultivated mushroom sporophores in finland. Int. J. Syst. Evol. Microbiol, 52:1973–1983

    Article  PubMed  CAS  Google Scholar 

  71. Nielsen, M.N., Sørensen, J., Fels, J., and Pedersen, H.C., 1998, Secondary metabolite-and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol, 64:3563–3569

    PubMed  CAS  Google Scholar 

  72. Nielsen, T.H., Christophersen, C., Anthoni, U., and Sørensen, J., 1999, Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol, 86:80–90

    Article  Google Scholar 

  73. Nielsen, T.H., Thrane, C., Christophersen, C., Anthoni, U., and Sørensen, J., 2000, Structure, production characteristics and fungal antagonsism of tensin —a new antifungal cyclic lipopep-tide from Pseudomonas fluorescens strain 96.578. J. Appl Microbiol, 89:992–1001

    Article  PubMed  CAS  Google Scholar 

  74. Nielsen, T.H., Sørensen, D., Tobiasen, C., Andersen, J.B., Christophersen, C., Givskov, M., and Sørensen, J., 2002, Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol, 68:3416–3423

    Article  PubMed  CAS  Google Scholar 

  75. Nielsen, T.H. and Sørensen, J., 2003, Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ. Microbiol, 69:861–868

    Article  PubMed  CAS  Google Scholar 

  76. Noordman, WH. and Janssen, D.B., 2002, Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl. Environ. Microbiol, 68:4502–4508

    Article  PubMed  CAS  Google Scholar 

  77. Pedras, M.S.C., Ismail, N., Quail, J.W, and Boyetchko, S.M., 2003, Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry, 62:1105–111

    Article  PubMed  CAS  Google Scholar 

  78. Peypoux, F., Bonmatin, J.M., and Wallach, I., 1999, Recent trends in the biochemistry of sur-factin. Appl Microbiol. Biotechnol, 51:553–563

    Article  PubMed  CAS  Google Scholar 

  79. Quail, J.W, Ismail, N., Pedras, M.S.C., and Boyetchko, S.M., 2002, Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Cryst., C58:268–271

    Google Scholar 

  80. Quigley, N.B. and Gross, D.C., 1994, Syringomycin production among strains of Pseudomonas syringae pv. syringae: Conservation of the syrB and syrD genes and activa-tion of phytotoxin production by plant signal molecules. Mol Plant-Microbe Interact., 7:78–90

    Article  PubMed  CAS  Google Scholar 

  81. Raaijmakers, J.M., Vlami, M., and de Souza, J.T., 2002, Antibitoic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 81:537–547

    Article  PubMed  CAS  Google Scholar 

  82. Rainey, P.B., Brodey, C.L., and Johnstone, K., 1991, Biological properties and specterum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol Mol. Plant Pathol, 39:57–70

    Article  CAS  Google Scholar 

  83. Rainey, P.B., Brodey, C.L., and Johnstone, K., 1992, Biology of Pseudomonas tolaasii, cause of brown blotch disease of the cultivated mushroom. Adv. Plant. Pathol, 39:105–106

    Google Scholar 

  84. Rainey, P.B., Brodey, C.L., and Johnstone, K., 1993, Identification of a gene-cluster encoding 3 high-molecular-weight proteins, which is required for synthesis of tolaasin by the mush-room pathogen Pseudomonas tolaasii. Mol. Microbio I., 8:643–652

    Article  CAS  Google Scholar 

  85. Rajendran, N., 1999, Identification and cloning of a gene locus encoding peptide synthetase of Pseudomonas fluorescens by two sets of PCR primers. Z. Naturforsch., 54c: 105–109

    Google Scholar 

  86. Rautenbach, M., Swart, P., and van der Merwe, M.J., 2000, The interaction of analogues of the antimicrobial lipopeptide iturin A(2) with alkali metal ions. Bioorg. Med. Chem., 8:2539–2548

    Article  PubMed  CAS  Google Scholar 

  87. Scholz-Schroeder, B.K., Hutchison, M.L., Grgurina, I., and Gross, D.C., 2001, The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrBl biosynthesis mutants. Mol. Plant-Microbe Interact., 14:336–348.

    Article  PubMed  CAS  Google Scholar 

  88. Scholz-Schroeder, B.K., Soule, J.D., Lu, S.E., Grgurina, I., and Gross, D.C., 2001, A physical map of the syringomycins and syringopeptin gene clusters localized to an approximately 145-kb DNA region of Pseudomonas syringae pv. syringae strain B301D. Mol Plant-Microbe Interact., 14:1426–1435.

    Article  PubMed  CAS  Google Scholar 

  89. Scholz-Schroeder, B.K., Soule, J.D., and Gross, D.C., 2003, The sypA, sypB and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol Plant-Microbe Interact, 16:271–280.

    Article  PubMed  CAS  Google Scholar 

  90. Segre, A., Bachman, R.C., Ballio, A., Bossa, F., Grgurina, I., Iacobellis, N.S., Marino, G., Pucci, P., Simmaco, M., and Takemoto, J.Y., 1989, The structure of syringomycin-Al, syringomycin-E and syringomycin-G. FEBSLett, 255:27–31.

    Article  CAS  Google Scholar 

  91. Soler-Rivas, C., Arpin, N., Olivier, J.M., and Wichers, HJ., 1999, WLIP, a lipodepsipeptide of Pseudomonas reactans, as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus. J.Appl Microbiol, 86:635–641.

    Article  CAS  Google Scholar 

  92. Soler-Rivas, C., Jolivet, S., Arpin, N., Olivier, J.M., and Wichers, HJ., 1999, Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. F EMS Microbiol Rev., 23:591–614.

    Article  PubMed  CAS  Google Scholar 

  93. Soler-Rivas, C., Möller, A.C., Arpin, N., Olivier, J.-M., and Wichers, HJ., 2001, Induction of a tyrosinase mRNA in Agaricus bisporus upon treatment with a tolaasin preparation from Pseudomonas tolaasii. Physiol. Mol Plant. Pathol, 58:95–99.

    Article  CAS  Google Scholar 

  94. Sorensen, K.N., Kim, K.H., and Takemoto, J.Y., 1996, In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae. Antimicrob. Agents Chemother, 40:2710–2713.

    CAS  Google Scholar 

  95. Sorensen, K.N., Kim, K.-H., and Takemoto, J.Y., 1998, PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Appl. Environ. Microbiol, 64:226–230.

    PubMed  CAS  Google Scholar 

  96. Sørensen, D., Nielsen, T.H., Christophersen, C., Sørensen, J., and Gajhede, M., 2001, Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Cryst, C57:1123–1124.

    Article  Google Scholar 

  97. Sørensen, D., 2002, Cyclic lipopeptides from Pseudomonas spp. Study and characterization of novel antibiotics and biocontrol agents. Ph.D. thesis. Department of Chemistry, University of Copenhagen.

    Google Scholar 

  98. Sørensen, D., Nielsen, T.H., Sørensen, J., and Christophersen, C., 2002, Cyclic lipoundecapeptide lokisin from Pseudomonas sp. DSS41. Tetrahedron Lett., 43:4421 4423.

    Article  Google Scholar 

  99. Thrane, C., Olsson, S., Nielsen, T.H., and Sørensen, J., 1999, Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol, 30:11–23.

    Article  CAS  Google Scholar 

  100. Thrane, C., Nielsen, T.H., Nielsen, M.N., Sørensen, J., and Olsson, S., 2000, Viscosinamideproducing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol. Ecol., 33:139–146.

    Article  PubMed  CAS  Google Scholar 

  101. Thrane, C., Nielsen, M.N., Sørensen, J., and Olsson, S., 2001, Pseudomonas fluorescens DR54 reduces sclerotia formation, biomass development, and disease incidence of Rhizoctonia solani causing damping-off in sugar beet. Microb. Ecol, 42:438–445.

    Article  PubMed  CAS  Google Scholar 

  102. Ui, H., Miyake, T., Iinuma, H., Naganawa, H., Hattori, S., Hamada, M., Takeuchi, T., Umezawa, S., and Umezawa, K., 1997, Pholipeptin, a novel cyclic lipoundecapeptide from Pseudomonas fluorescens. J. Org. Chem., 62:103–108.

    Article  PubMed  CAS  Google Scholar 

  103. Woo, S., Fogliano, V., Scala, F., and Lorito, M., 2002, Synergism between fungal enzymes and bacterial antibiotics may enhance biocontrol. Antonie van Leeuwenhoek, 81:353–356.

    Article  PubMed  CAS  Google Scholar 

  104. Zhang, J.-H., Quigley, N.B., and Gross, D.C., 1997, Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol., 63:2771–2778.

    PubMed  CAS  Google Scholar 

  105. Zhang, Y.-Z., Sun, X., Zeckner, D.J., Sachs, R.K., Current, W.L., Gidda, X, Rodriguez, M., and Chen, S.-H., 2001, Syntheses and antifungal activities of novel 3-amino bearing pseudomycin analogues. Bioorg. Med. Chem. Lett, 11:903–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nybroe, O., Sørensen, J. (2004). Production of Cyclic Lipopeptides by Fluorescent Pseudomonads. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics