Skip to main content
Log in

Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Pseudomonas fluorescens complex contains at least eight phylogenetic groups and each of these includes several bacterial species sharing ecological and physiological traits. Pseudomonas chlororaphis classified in a separate group is represented by three different subspecies that show distinctive traits exploitable for phytostimulation and biocontrol of phytopathogens. The high level of microbial competitiveness in soil as well as the effectiveness in controlling several plant pathogens and pests can be related to the P. chlororaphis ability to implement different stimulating and toxic mechanisms in its interaction with plants and the other micro- and macroorganisms. Pseudomonas chlororaphis strains produce antibiotics, such as phenazines, pyrrolnitrine, 2-hexyl, 5-propyl resorcinol and hydrogen cyanide, siderophores such as pyoverdine and achromobactine and a complex blend of volatile organic compounds (VOCs) that effectively contribute to the control of several plant pathogens, nematodes and insects. Phenazines and some VOCs are also involved in the induction of systemic resistance in plants. This complex set of beneficial strategies explains the high increasing interest in P. chlororaphis for commercial and biotechnological applications. The aim of this review is to highlight the role of the different mechanisms involved in the biocontrol activity of P. chlororaphis strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anand A, Chinchilla D, Tan C, Mène-Saffrané L, L’Haridon F, Weisskopf L (2020) Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans. Microorganisms 8(8):1144

    CAS  Google Scholar 

  • Arrebola E, Tienda S, Vida C, De Vicente A, Cazorla FM (2019) Fitness features involved in the biocontrol interaction of Pseudomonas chlororaphis with host plants: the case study of PcPCL1606. Front Microbiol 10:719

    PubMed  PubMed Central  Google Scholar 

  • Arseneault T, Filion M (2016) Phenazine-producing Pseudomonas spp. as biocontrol agents of plant pathogens. In: Singh DP et al (eds) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 53–68

    Google Scholar 

  • Audrain B, Farag MA, Ryu CM, Ghigo JM (2015) Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol Rev 39(2):222–233

    CAS  Google Scholar 

  • Biessy A, Novinscak A, Blom J, Léger G, Thomashow LS, Cazorla FM, Josic D, Filion M (2019) Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp. Environ Microbiol 21(1):437–455

    CAS  PubMed  Google Scholar 

  • Brilli F, Pollastri S, Raio A, Baraldi R, Neri L, Bartolini P, Podda A, Loreto F, Maserti BE, Balestrini R (2019) Root colonization by Pseudomonas chlororaphis primes tomato (Lycopersicum esculentum) plants for enhanced tolerance to water stress. J Plant Physiol 232:82–93

    CAS  PubMed  Google Scholar 

  • Burr SE, Gobeli S, Kuhnert P, Goldschmidt-Clermont E, Frey J (2010) Pseudomonas chlororaphis subsp. piscium subsp. Nov., isolated from freshwater fish. Int J Syst Evol Microbiol 60(12):2753–2757

    CAS  PubMed  Google Scholar 

  • Calderón CE, de Vicente A, Cazorla FM (2014) Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. FEMS Microbiol Ecol 89(1):20–31

    PubMed  Google Scholar 

  • Calderón CE, Tienda S, Heredia-Ponce Z, Arrebola E, Cárcamo-Oyarce G, Eberl L, Cazorla FM (2019) The compound 2-hexyl, 5-propyl resorcinol has a key role in biofilm formation by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606. Front Microbiol 10:396

    PubMed  PubMed Central  Google Scholar 

  • Cazorla FM, Duckett SB, Bergström ET, Noreen S, Odijk R, Lugtenberg BJ, Thomas-Oates JE, Bloemberg GV (2006) Biocontrol of avocado Dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol Plant Microbe Interact 19(4):418–428

    CAS  PubMed  Google Scholar 

  • Chancey ST, Wood DW, Pierson LS III (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chancey ST, Wood DW, Pierson EA, Pierson LS III (2002) Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. Appl Environ Microbiol 68:3308–3314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin-A-Woeng TF, Bloemberg GV, van der Bij AJ, van der Drift KM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 11(11):1069–1077

    CAS  Google Scholar 

  • Chin-A-Woeng TF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant-Microbe Interact 14(8):969–979

    CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(8):1067–1075

    CAS  PubMed  Google Scholar 

  • Deng P, Wang X, Baird SM, Lu SE (2015) Complete genome of Pseudomonas chlororaphis strain UFB2, a soil bacterium with antibacterial activity against bacterial canker pathogen of tomato. Stand Genomic Sci 10(1):117

    PubMed  PubMed Central  Google Scholar 

  • Flury P, Vesga P, Péchy-Tarr M, Aellen N, Dennert F, Hofer N et al (2017) Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 8:100

    PubMed  PubMed Central  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Ann Rev Genet 35(1):439–468

    CAS  PubMed  Google Scholar 

  • Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martin M, Rivilla R, Redondo-Nieto M (2016) Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS ONE 11(2):e0150183

    PubMed  PubMed Central  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19:924–930

    CAS  PubMed  Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant-Microbe Interact 14:1351–1363

    CAS  PubMed  Google Scholar 

  • Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y (2018) Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol Res 215:55–64

    CAS  PubMed  Google Scholar 

  • Kang BR, Anderson AJ, Kim YC (2018) Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla. Plant Pathol J 34(1):35–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Hua GKH, Ongena M, Höfte M (2016) Role of phenazines and cyclic lipopeptides produced by Pseudomonas sp. CMR12a in induced systemic resistance on rice and bean. Environ Microbiol Rep 8(5):896–904

    PubMed  Google Scholar 

  • Maddula VS, Zhang Z, Pierson EA, Pierson LS 3rd (2006) Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30–84. Microb Ecol 52:289–301. https://doi.org/10.1007/s00248-006-9064-6

    Article  CAS  PubMed  Google Scholar 

  • Maddula VSRK, Pierson EA, Pierson LS (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30–84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190(8):2759–2766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44:417–445

    CAS  PubMed  Google Scholar 

  • Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P, Mazurier S, Heide L, Blankenfeldt W, Weller DM, Thomashow LS (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76(3):866–879

    CAS  PubMed  Google Scholar 

  • Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68(6):2745–2753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michelsen CF, Stougaard P (2012) Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluorescens In5 from Greenland is highly dependent on growth medium. Can J Microbiol 58(4):381–390

    CAS  PubMed  Google Scholar 

  • Morohoshi T, Wang W-Z, Suto T, Saito Y, Ito S, Someya N, Ikeda T (2013) Phenazine antibiotic production and antifungal activity are regulated by multiple quorum-sensing systems in Pseudomonas chlororaphis subsp. aurantiaca StFRB508. J Biosci Bioeng 116:580–584

    CAS  PubMed  Google Scholar 

  • Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12(6):1513–1530

    CAS  PubMed  Google Scholar 

  • Nandi M, Selin C, Brassinga AKC, Belmonte MF, Fernando WD, Loewen PC, De Kievit TR (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS ONE 10(4):e0123184

    PubMed  PubMed Central  Google Scholar 

  • Nandi M, Selin C, Brawerman G, Fernando WD, de Kievit T (2017) Hydrogen cyanide, which contributes to Pseudomonas chlororaphis strain PA23 biocontrol, is upregulated in the presence of glycine. Biol Control 108:47–54

    CAS  Google Scholar 

  • Pan H, Pierson LS 3rd, Pierson EA (2020) PcsR2 is a LuxR-type regulator that is upregulated on wheat roots and is unique to Pseudomonas chlororaphis. Front Microbiol 11:560124. https://doi.org/10.3389/fmicb.2020.560124

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52(5):532–537

    CAS  PubMed  Google Scholar 

  • Peix A, Valverde A, Rivas R, Igual JM, Ramírez-Bahena MH, Mateos PF, Santa-Regina I, Rodriguez-Barrueco C, Martinez-Molina E, Velázquez E (2007) Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57(6):1286–1290

    CAS  PubMed  Google Scholar 

  • Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86(6):1659–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popova AA, Koksharova OA, Lipasova VA, Zaitseva JV, Katkova-Zhukotskaya OA, Eremina SI, Mironov AS, Chernin LS, Khmel IA (2014) Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster. BioMed Res Int 2014:125704

    PubMed  PubMed Central  Google Scholar 

  • Puopolo G, Raio A, Pierson LS 3rd, Zoina A (2011) Selection of a new Pseudomonas chlororaphis strain for the biological control of Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathol Mediterr 50:228–235. https://doi.org/10.14601/Phytopathol_Mediterr-9407

    Article  Google Scholar 

  • Puopolo G, Masi M, Raio A, Andolfi A, Zoina A, Cimmino A, Evidente A (2013) Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives. Nat Prod Res 27:956–966. https://doi.org/10.1080/14786419.2012.696257

    Article  CAS  PubMed  Google Scholar 

  • Raio A, Puopolo G, Masi M, Danti R, Della Rocca G, Evidente A (2011) Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. aureofaciens strain M71. Biol Control 58:133–138. https://doi.org/10.1016/j.micres.2017.03.003

    Article  CAS  Google Scholar 

  • Raio A, Reveglia P, Puopolo G, Cimmino A, Danti R, Evidente A (2017) Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo. Microbiol Res 199:49–56

    CAS  PubMed  Google Scholar 

  • Raio A, Brilli F, Baraldi R, Neri L, Puopolo G (2020) Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. Microbiol Res 239:126517

    CAS  PubMed  Google Scholar 

  • Rieusset L, Rey M, Muller D, Vacheron J, Gerin F, Dubost A, Comte G, Prigent-Combaret C (2020) Secondary metabolites from plant-associated Pseudomonas are overproduced in biofilm. Microbial Biotechnol 13(5):1562–1580

    CAS  Google Scholar 

  • Schulz-Bohm K, Martín-Sánchez L, Garbeva P (2017) Microbial volatiles: small molecules with an important role in intra-and inter-kingdom interactions. Front Microbiol 8:2484

    PubMed  PubMed Central  Google Scholar 

  • Shen X, Wang Z, Huang X, Hu H, Wang W, Zhang X (2017) Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. BMC Genomics 18(1):1–14

    Google Scholar 

  • Song C, Yue SJ, Liu WH, Zheng YF, Zhang CH, Feng TT, Hu HB, Wang W, Zhang XH (2020) Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production. World J Microbiol Biotechnol 36:49

    CAS  PubMed  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS III (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veselova MA, Klein SH, Bass IA, Lipasova VA, Metlitskaya AZ, Ovadis MI, Chernin LS, Khmel IA (2008) Quorum sensing systems of regulation, synthesis of phenazine antibiotics, and antifungal activity in rhizospheric bacterium Pseudomonas chlororaphis 449. Russ J Genet 44(12):1400

    CAS  Google Scholar 

  • Xu S, Pan X, Luo J, Wu J, Zhou Z, Liang X, He Y, Zhou M (2015) Effects of phenazine-1-carboxylic acid on the biology of the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. Pestic Biochem Phys 117:39–46

    CAS  Google Scholar 

  • Yuan P, Pan H, Boak EN, Pierson LS 3rd, Pierson EA (2020) Phenazine-producing rhizobacteria promote plant growth and reduce redox and osmotic stress in wheat seedlings under saline conditions. Front Plant Sci 11:575314. https://doi.org/10.3389/fpls.2020.575314

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Pierson LS III (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li T, Liu Y, Li X, Zhang C, Feng Z, Peng X, Li Z, Qin S, Xing K (2019) Volatile organic compounds produced by Pseudomonas chlororaphis subsp aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes. J Agric Food Chem 67(13):3702–3710

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was not supported through grants from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Raio.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of commercial or financial relationships that could be constructed as a potential conflict of interest. The manuscript has been read and approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raio, A., Puopolo, G. Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. World J Microbiol Biotechnol 37, 99 (2021). https://doi.org/10.1007/s11274-021-03063-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03063-w

Keywords

Navigation