Skip to main content
Log in

Comparative proteomic analysis of apple branches susceptible and resistant to ring rot disease

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Ring rot disease, caused by the Botryosphaeria berengeriana f. sp. piricola pathogen, is a destructive disease for apple production. To gain further understanding about the defense mechanisms of apple branches against ring rot disease, a comparative proteomic analysis was conducted in our study. We selected two different host responses to B. berengeriana f.sp. piricola infection or challenge, and compared the different proteomes of susceptible and resistant apple branches that had or had not been inoculated with the pathogen. By using 2-DE and MALDI-TOF-TOF MS analysis, 27 differentially expressed proteins were identified in two inoculation assays. According to their function, the proteins were categorized into five classes. In total, according to these two inoculation assays, there were six differentially expressed defense-related proteins identified in the bark of susceptible and resistant hosts, including Mal d1, ASR, and SAMS, which may play key roles for the resistance mechanisms of each host against ring rot disease. We speculated that the only up-regulation of the ASR protein and the dramatic decrease of SAMS in the resistant host may be related to its better disease resistance. In addition, a total of 10 proteins exhibited opposite expression patterns in the bark of susceptible and resistant branches, and they may also be related to the different disease resistances of the two hosts. Due to the complexity of antifungal mechanisms of apple branch hosts against ring rot disease, to obtain more valuable insights about the interaction between the apple host and B. berengeriana f. sp. piricola pathogen, many further investigations will be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional electrophoresis

PR:

Pathogenesis-related

SAMS:

S-adenosylmethionine synthetase

APX:

Ascorbate peroxidase

ASR:

Abscisic stress ripening-like

References

  • Bednarek, P., & Osbourn, A. (2009). Plant-microbe interactions: chemical diversity in plant defense. Science, 324, 746–748.

    Article  CAS  PubMed  Google Scholar 

  • Beuning, L. L., Bowen, J. H., Persson, H. A., Barraclough, D., Bulley, S., & MacRae, E. A. (2004). Characterisation of Mal d 1-related genes in Malus. Plant Molecular Biology, 55, 369–388.

    Article  CAS  PubMed  Google Scholar 

  • Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirkse, W., Van Staveren, M., Stiekema, W., Drost, L., Ridley, P., Hudson, S. A., Patel, K., Murphy, G., Piffanelli, P., Wedler, H., Wedler, E., Wambutt, R., Weitzenegger, T., Pohl, T. M., Terryn, N., Gielen, J., Villarroel, R., De Clerck, R., Van Montagu, M., Lecharny, A., Auborg, S., Gy, I., Kreis, M., Lao, N., Kavanagh, T., Hempel, S., Kotter, P., Entian, K. D., Rieger, M., Schaeffer, M., Funk, B., Mueller-Auer, S., Silvey, M., James, R., Montfort, A., Pons, A., Puigdomenech, P., Douka, A., Voukelatou, E., Milioni, D., Hatzopoulos, P., Piravandi, E., Obermaier, B., Hilbert, H., Düsterhöft, A., Moores, T., Jones, J. D., Eneva, T., Palme, K., Benes, V., Rechman, S., Ansorge, W., Cooke, R., Berger, C., Delseny, M., Voet, M., Volckaert, G., Mewes, H. W., Klosterman, S., Schueller, C., & Chalwatzis, N. (1998). Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 391, 485–488.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H. W., Lee, B. G., Kim, N. H., Park, Y., Lim, C. W., Song, H. K., & Hwang, B. K. (2008). A role for a menthone reductase in resistance against microbial pathogens in plants. Plant Physiology, 148, 383–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faize, M., Burgos, L., Faize, L., Petri, C., Barba-Espin, G., Díaz-Vivancosb, P., Clemente-Moreno, M. J., Alburquerque, N., & Hernandez, J. A. (2012). Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase. Plant Pathology, 61, 858–866.

    Article  CAS  Google Scholar 

  • Fan, H. K., Wang, F., Gao, H., Wang, L., Xu, J. H., & Zhao, Z. Y. (2011). Pathogen-induced MdWRKY1 in ‘Qinguan’ apple enhances disease resistance. Journal of Plant Biology, 54, 150–158.

    Article  CAS  Google Scholar 

  • Fang, X. P., Chen, W. Y., Xin, Y., Zhang, H. M., Yan, C. Q., Yu, H., Liu, H., Xiao, W. F., Wang, S. Z., Zheng, G. Z., Liu, H. B., Jin, L., Ma, H. S., & Ruan, S. L. (2012). Proteomic analysis of strawberry leaves infected with Colletotrichum fragaria. Journal of Proteomics, 75, 4074–4090.

    Article  CAS  PubMed  Google Scholar 

  • Izhaki, A., Shoseyov, O., & Weiss, D. (1995). A petunia cDNA encoding S-adenosylmethionine synthetase. Plant Physiology, 108, 841–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurick, W., Janisiewicz, W., Saftner, R. A., Vicoet, I., & Gaskins, V. L. (2011). Identification of wild apple germplasm (Malus spp.) accessions with resistance to the postharvest decay pathogens Penicillium expansum and Colletotrichum acutatum. Plant Breeding, 130, 481–486.

    Article  Google Scholar 

  • Lee, J., Bricker, T. M., Lefevre, M., Pinson, S. R., & Oard, J. H. (2006). Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen rhizoctonia solani. Molecular Plant Pathology, 7, 405–416.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z. T., Dhekney, S. A., & Gray, D. J. (2011). PR–1 gene family of grapevine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high level resistance to bacterial disease in transgenic tobacco. Plant Cell Reports, 30, 1–11.

    Article  PubMed  Google Scholar 

  • Li, B. Q., Zhang, C. F., Cao, B. H., Qin, G. Z., Wang, W. H., & Tian, S. P. (2012). Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids, 43, 2469–2480.

    Article  CAS  PubMed  Google Scholar 

  • Liao, M., Li, Y., & Wang, Z. (2009). Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics, 9, 2809–2819.

    Article  CAS  PubMed  Google Scholar 

  • Loon, L. C., Rep, M., & Pieterse, C. M. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Mayer, M., Oberhuber, C., Loncaric, I., Heissenberger, B., Keck, M., & Scheiner, O. (2011). Fire blight (Erwinia amylovora) affects Mal d 1-related allergenicity in apple. European Journal of Plant Pathology, 131, 1–7.

    Article  CAS  Google Scholar 

  • Mehta, A., Brasileiro, A. C., Souza, D. S., Romano, E., Campos, M. A., Grossi-de-Sá, M. F., Silva, M. S., Franco, O. L., Fragoso, R. R., Bevitori, R., & Rocha, T. L. (2008). Plant-pathogen interactions: what is proteomics telling us? FEBS Journal, 275, 3731–3746.

    Article  CAS  PubMed  Google Scholar 

  • Nandi, A. K. (2016). Application of antimicrobial proteins and peptides in developing disease resistant plants. In D. B. Collinge (Ed.), Biotechnology for plant disease control (pp. 51–70). New York: Wiley.

    Google Scholar 

  • Nazmul, H. B., Yan, H., Liu, W. P., Liu, G. S., Selvaraj, G., Wei, Y. D., & John, K. (2007). Transcriptional regulation of genes involved in the pathways of biosynthesis and supply of methyl units in response to powdery mildew attack and abiotic stresses in wheat. Plant Molecular Biology, 64, 305–318.

    Article  Google Scholar 

  • Norelli, J. L., Farrell, R. E., Bassett, C. L., Baldo, A. M., Lalli, D. A., Aldwinckle, H. S., & Wisniewski, M. E. (2009). Rapid transcriptional response of apple to fire blight disease revealed by cDNA suppression subtractive hybridization analysis. Tree Genetics & Genomes, 5, 27–40.

    Article  Google Scholar 

  • Ogata, T., Sano, T., & Harada, Y. (2000). Botryosphaeria spp. isolated from apple and several deciduous fruit trees are divided into three groups based on the production of warts on twigs, size of conidia, and nucleotide sequences of nuclear ribosomal DNA ITS regions. Mycoscience, 41, 331–337.

    Article  CAS  Google Scholar 

  • Palanisamy, S., & Mandal, A. K. A. (2014). Susceptibility against grey blight disease-causing fungus Pestalotiopsis sp. in tea (Camellia sinensis (L.) O. Kuntze) cultivars is influenced by anti-oxidative enzymes. Applied Biochemistry and Biotechnology, 172, 216–223.

    Article  CAS  PubMed  Google Scholar 

  • Petriccione, M., Di Cecco, I., Arena, S., Scaloni, A., & Scortichini, M. (2013). Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. Actinidiae strain. Journal of Proteomics, 78, 461–476.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, W. M., Huang, R., Steel, C. C., & Savocchia, S. (2010). Identification, distribution and current taxonomy of Botryosphaeriaceae species associated with grapevine decline in new South Wales and South Australia. Australian Journal of Grape and Wine Reaearch, 16, 258–271.

    Article  Google Scholar 

  • Pühringe, H., Moll, D., Hoffmann, S. K., Watillon, B., Katinger, H., & Laimer, M. (2000). The promoter of an apple Ypr10 gene, encoding the major allergen Mal d 1, is stress- and pathogen-inducible. Plant Science, 152, 35–50.

    Article  Google Scholar 

  • Rampitsch, C., & Bykova, N. V. (2012). Proteomics and plant disease: advances in combating a major threat to the global food supply. Proteomics, 12, 673–690.

    Article  CAS  PubMed  Google Scholar 

  • Rocco, M., Corrado, G., Arena, S., D’Ambrosio, C., Tortiglione, C., Sellaroli, S., Marra, M., & Scaloni, A. (2008). The expression of tomato prosystemin gene in tobacco plants highly affects host proteomic repertoire. Journal of Proteomics, 71, 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh, G. H., Siopongco, J., Wade, L. J., Ghareyazie, B., & Bennett, J. (2002). A proteomic approach to analyzing drought and salt-responsiveness in rice. Field Crops Research, 76, 199–219.

    Article  Google Scholar 

  • Slippers, B., Smit, W. A., Crous, P. W., Coutinho, T., Wingfield, B. D., & Wingfield, M. J. (2007). Taxonomy, phylogeny and identification of Botryosphaeriaceae associated with pome and stone fruit trees in South Africa and other regions of the world. Plant Pathology, 56, 128–139.

    Article  CAS  Google Scholar 

  • Soh, H. C., Park, A. R., Park, S., Back, K., Yoon, J. B., & Park, H. G. (2012). Comparative analysis of pathogenesis-related protein 10 (PR10) genes between fungal resistant and susceptible peppers. European Journal of Plant Pathology, 132, 37–48.

    Article  CAS  Google Scholar 

  • Upadhyay, P., Rai, A., Kumar, R., Singh, M., & Sinha, B. (2014). Differential expression of pathogenesis related protein genes in tomato during inoculation with A. solani. Journal of Plant Pathology and Microbiology, 5, 2–7.

    Google Scholar 

  • Xu, C., Wang, C. S., Ju, L. L., Zhang, R., Biggs, A. R., Tanaka, E. J., Li, B. Z., & Sun, G. Y. (2015). Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China. Fungal Diversity, 71, 215–231.

    Article  CAS  Google Scholar 

  • Zhang, C. X., Tian, Y., & Cong, P. H. (2015). Proteome analysis of pathogen-responsive proteins from apple leaves induced by the Alternaria blotch Alternaria alternate. PloS One, 6, e0122233. doi:10.1371/journal.pone.0122233.

    Article  Google Scholar 

  • Zhou, Z. Q., Hou, H., Wang, L., & Zhu, F. L. (2010). Trunk apple ring rot artificial inoculation method and the identification of cultivar resistance. Journal of Fruit Science, 6, 952–955.

    Google Scholar 

  • Zhuang, J., Yao, Q., Xiong, A., & Zhang, J. (2011). Isolation, phylogeny and expression patterns of AP2-like genes in apple (Malus × domestica Borkh). Plant Molecular Biology Reporter, 29, 209–216.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the earmarked fund for the China Agriculture Research System (CARS-28) and project of national science and technology supporting plan (2013BAD02B01). The views and opinions expressed in this article are solely those of the writers, and the funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Pei-hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai-xia, Z., Yi, T., Li-yi, Z. et al. Comparative proteomic analysis of apple branches susceptible and resistant to ring rot disease. Eur J Plant Pathol 148, 329–341 (2017). https://doi.org/10.1007/s10658-016-1092-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1092-6

Keywords

Navigation