Skip to main content
Log in

Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action?

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The postharvest phase has been considered an environment for successful application of biological control agents (BCAs). However, the interactions between fungal pathogen, host (fruit), and antagonist are influenced by several parameters such as temperature, oxidative stresses, oxygen composition and water activity that could determine the success of biocontrol. Knowledge of the modes of action of BCAs is essential in order to enhance their viability and increase their potential in disease control. The antagonists display a wide range of modes of action: antibiosis, competition for nutrients and space, parasitism and induction of resistance are considered the main ones. Their efficacy, however, is related to the host and the pathogen; sometimes, these mechanisms could act simultaneously, and it is therefore difficult to establish which is related to a specific antifungal action. The current review presents a brief summary of the research that has led to a better understanding of the mode of action of BCAs with particular emphasis on the most recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpha, C. J., Campos, M., Jacobs-Wagner, C., & Strobel, S. A. (2015). Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Journal of Applied Environmental Microbiology, 81, 1147–1156.

    Article  PubMed  Google Scholar 

  • Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108, 386–395.

    Article  CAS  PubMed  Google Scholar 

  • Bencheqroun, S. M., Bajji, M., Massart, S., Labhilili, M., El-Jaafari, S., & Jijakli, M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Postharvest Biology and Technology, 46, 128–135.

    Article  CAS  Google Scholar 

  • Bull, C. T., Wadsworth, M. L. K., Sorenson, K. N., Takemoto, J., Austin, R., & Smilanick, J. L. (1998). Syringomycin E produced by biological agents controls green mold on lemons. Biological Control, 12, 89–95.

    Article  Google Scholar 

  • Castoria, R., De Curtis, F., Lima, G., & De Cicco, V. (1997). β-1,3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postharvest Biology and Technology, 12, 293–300.

    Article  CAS  Google Scholar 

  • Chan, Z., & Thian, S. (2005). Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Postharvest Biology and Technology, 36, 215–223.

    Article  CAS  Google Scholar 

  • Chanchaichaovivat, A., Panijpan, B., & Ruenwongsa, P. (2008). Putative mode of action of Pichia guilliermondii strain R13 in controlling chilli anthracnose after harvest. Biological Control, 47, 207–215.

    Article  Google Scholar 

  • Di Francesco, A., Ugolini, L., Lazzeri, L., & Mari, M. (2014). Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81, 8–14.

    Article  Google Scholar 

  • Di Francesco, A., Roberti, R., Martini, C., Baraldi, E., & Mari, M. (2015). Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches. Microbiological Research, 181, 61–67.

    Article  PubMed  Google Scholar 

  • Dimkic, I., Živkovi, S., Beri, T., Ivanovi, Z., Gavrilovi, V., Stankovi, S., & Fira, D. (2013). Characterization and evaluation of two Bacillus strains, SS-12.6 and SS-13.1, as potential agents for the control of phytopathogenic bacteria and fungi. Biological Control, 65, 312–321.

    Article  Google Scholar 

  • Droby, S., Wisniewski, M., Macarisin, D., & Wilson, C. (2009). Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biology and Technology, 52, 137–145.

    Article  Google Scholar 

  • El-Ghaouth, A., Wilson, C. L., & Wisniewski, M. E. (1998). Untrastructural and cytochemical aspects of biocontrol activity of Candida saitona in apple fruit. Phytopathology, 88, 282–291.

    Article  CAS  PubMed  Google Scholar 

  • El-Ghaouth, A., Wilson, C. L., & Wisniewski, M. E. (2004). Biologically based alternatives to synthetic fungicides for the postharvest diseases of fruit and vegetables. In S. A. M. H. Naqvi (Ed.), Diseases of fruit and vegetables (pp. 511–535). Kluwer Academic Publishers: The Netherlands.

    Google Scholar 

  • Galvez, A., Abriouel, H., Benomar, N., & Lucas, R. (2010). Microbial antagonists to food-borne pathogens and biocontrol. Current Opinion in Biotechnology, 21, 142–148.

    Article  CAS  PubMed  Google Scholar 

  • Grgurina, I., Mariotti, F., Fogliano, V., Gallo, M., Scaloni, A., Iacobellis, N. S., Lo Cantore, P., Mannina, L., van Axel Castelli, A., & Graniti, A. (2002). A new syringopeptin produced by bean strains of Pseudomonas syringae pv. syringae. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1597, 81–89.

    Article  CAS  Google Scholar 

  • Huang, R., Li, G. Q., Zhang, J., Yang, L., Che, H. J., Jiang, D. H., & Huang, H. C. (2011). Control of postharvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 11, 859–869.

    Article  Google Scholar 

  • Huang, R., Che, H. J., Zhang, J., Yang, L., Jiang, D. H., & Li, G. (2012). Evaluation of Sporidiobolus pararoseus strain YCXT3 as biocontrol agent of Botrytis cinerea on post-harvest strawberry fruits. Biological Control, 62, 53–63.

    Article  Google Scholar 

  • Ippolito, A., El Ghaouth, C. L., Wilson, M., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology, 19, 265–272.

    Article  CAS  Google Scholar 

  • Janisiewicz, W. J., Tworkoski, T. J., & Sharer, C. (2000). Characterizing the mechanism of biological control of postharvest diseases on fruit with a simple method to study competition for nutrients. Phytopathology, 90, 1196–1200.

    Article  CAS  PubMed  Google Scholar 

  • Jijakli, M. H., & Lepoivre, P. (1998). Characterization of an exo–1, 3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology, 88, 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Lima, G., Arru, S., De Curtis, F., & Arras, G. (1999). Influence of antagonist, host fruit and pathogen on the biological control of postharvest fungal diseases by yeasts. Journal of Industrial Microbiology and Biotechnology, 23, 223–229.

    Article  CAS  Google Scholar 

  • Liu, J., Wisniewski, M., Droby, S., Norelli, J., Hershkovitz, V., Tian, S., et al. (2012). Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of Candida oleophila following sublethal oxidative stress exposure. FEMS Microbiology Ecology, 80, 578–590.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167, 153–161.

    Article  PubMed  Google Scholar 

  • Lu, L., Lu, H., Wu, C., Fang, W., Yu, C., Ye, C., Shi, Y., Yu, T., & Zheng, X. (2013). Rhodosporidium paludigenum induces resistance and defense-related responses against Penicillium digitatum in citrus fruit. Postharvest Biology and Technology, 85, 196–202.

    Article  Google Scholar 

  • Magan, N. (2001). Physiological approaches to improving the ecological fitness of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents: Progress, problems and potential. Wallingford: CABI Publishing.

    Google Scholar 

  • Mari, M., Martini, C., Spadoni, A., Rouissi, W., & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology, 73, 56–72.

    Article  Google Scholar 

  • Masih, E. I., & Paul, B. (2002). Secretion of □-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Current Microbiology, 44, 391–395.

    Article  CAS  PubMed  Google Scholar 

  • Mercier, J., & Jiménez, J. I. (2004). Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biology and Technology, 31, 1–8.

    Article  Google Scholar 

  • Miyazawa, M., Kimura, M., Yabe, Y., Tsukamoto, D., Sakamoto, M., Horibe, I., et al. (2008). Use of solid phase microextraction (SPME) for profiling the volatile metabolites produced by Glomerella cingulata. Journal of Oleo Science, 57, 585–590.

    Article  CAS  PubMed  Google Scholar 

  • Morat, S. U., Hung, R., & Bennet, J. W. (2012). Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Reviews, 26, 73–83.

    Article  Google Scholar 

  • Nunes, C. A. (2012). Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 133, 181–196.

    Article  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isoalted yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiology, 47, 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Poppe, L., Vanhoutte, S., & Höfte, M. (2003). Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. European Journal of Plant Pathology, 109, 963–973.

    Article  CAS  Google Scholar 

  • Pretorius, D., van Rooyen, J., & Clarke, K. G. (2015). Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. New Biotechnology, 32, 243–252.

    Article  CAS  PubMed  Google Scholar 

  • Pusey, P. L., & Wilson, C. L. (1984). Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Disease, 68, 753–756.

    Article  Google Scholar 

  • Rouissi, W., Ugolini, L., Martini, C., Lazzeri, L., & Mari, M. (2013). Control of postharvest fungal pathogens by antifungal compounds from Penicillium expansum. Journal of Food Protection, 11, 1879–1993.

    Article  Google Scholar 

  • Saravanakumar, D., Ciavorella, A., Spadaro, D., Garibaldi, A., & Gullino, M. L. (2008). Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biology and Technology, 49, 121–128.

    Article  CAS  Google Scholar 

  • Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50, 205–221.

    Article  Google Scholar 

  • Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39–49.

    Article  CAS  Google Scholar 

  • Spadaro, D., & Gullino, M. L. (2004). State of the art and future prospects of the biological control of postharvest fruit diseases. International Journal of Food Microbiology, 91, 185–194.

    Article  PubMed  Google Scholar 

  • Tampakaki, A.P., Hatziloukas, E., Panopoulos, N.J. (2009). Plant pathogens, bacteria. Encyclopedia of Microbiology Third Edition, 655–677.

  • Vero, S., Garmendia, G., Gonzalez, N. B., Bentancur, O., & Wisniewski, W. (2013). Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus x domestica). FEMS Yeast Research, 13, 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Waewthongrak, W., Pisuchpen, S., & Leelasuphakul, W. (2015). Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biology and Technology, 99, 44–49.

    Article  CAS  Google Scholar 

  • Weller, D. M. (2007). Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology, 97, 250–256.

    Article  PubMed  Google Scholar 

  • Wisniewski, M., Biles, C., Droby, S. (1991). The use of yeast Pichia guilliermondii as a biocontrol agent: characterization of attachment to Botrytis cinerea. In: C.L. Wilson, E. Chalutz (Eds.), Biological Control of Postharvest Diseases of Fruit and Vegetables (pp. 167–183). Proc. Workshop: US Department of Agriculture.

  • Xu, X., & Tian, S. (2008). Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biology and Technology, 49, 379–385.

    Article  CAS  Google Scholar 

  • Yao, H., & Tian, S. (2005). Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 35, 253–262.

    Article  CAS  Google Scholar 

  • Yu, S. M., & Lee, Y. H. (2015). Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin. Journal of Basic Microbiology, 55, 898–906.

    Article  CAS  PubMed  Google Scholar 

  • Yu, T., Wang, L., Yin, Y., Wang, Y., & Zheng, X. (2008). Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit. International Journal of Food Microbiology, 122, 44–48.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z. X., Wei, D. F., Guan, Y., Zheng, A. N., & Zhong, J. J. (2011). Damage of Escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. Journal of Applied Microbiology, 108, 898–907.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Francesco, A., Martini, C. & Mari, M. Biological control of postharvest diseases by microbial antagonists: how many mechanisms of action?. Eur J Plant Pathol 145, 711–717 (2016). https://doi.org/10.1007/s10658-016-0867-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0867-0

Keywords

Navigation