Skip to main content

Recent Advancement in Fungal Biocontrol Agents

  • Chapter
  • First Online:
Plant Mycobiome

Abstract

Fungal biocontrol agents (FBCAs) are target specific, have a short generation time with a comparatively high reproductive rate, thus considered to be an emerging field of biocontrol research area. They have become a substitute for chemical pesticides because of their complex mechanism of action without developing resistance in pests, insects, weeds, and plant pathogens and causing any harm to the environment. FBCAs provide protection against diseases using different biocontrol processes like antibiosis, mycoparasitism, competition, and induced resistance etc. Extensive research work is underway to explore biological disease control mechanisms and develop new and effective fungal biological control agents (FBCAs). The modern biotechnological and genetic engineering tools with a combination of genomics, metabolomics, proteomics and transcriptomics in biocontrol mechanisms have helped a lot to identify new metabolites and metabolic pathways providing better timing, formulation and application of FBCAs. Further, myconanotechnology and microbial consortia are now key strategies, playing a main role in the improvement of current biological control practices for sustainable agriculture. Moreover, extracts and secondary metabolites of various fungi including AMF and rust fungi are also having a substantial contribution in bio-control processes of plant pathogens and will attract more attention in future studies. In this chapter, we will figure out different Fungal biocontrol agents against plant diseases, their modes of action and recent advanced methods that provide enhanced biocontrol potential against plant pathogens that may contribute in the achievement of long-term sustainability goals in agriculture sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah NS, Doni F, Mispan MS, Saiman MZ, Yusuf YM, Oke MA, Suhaimi NSM (2021) Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy 11:2559

    Article  CAS  Google Scholar 

  • Adebayo EA, Azeez MA, Alao MB, Oke AM, Aina DA (2021) Fungi as veritable tool in current advances in nanobiotechnology. Heliyon 7(11):e08480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adebola MO, Amadi JE (2010) Antagonistic activities of Paecilomyces and Rhizopus species against the cocoa black pod pathogen (Phytophthora palmivora). Sci Afr 4:235–239

    Google Scholar 

  • Afshan NS, Yaseen A, Niazi AR, Zulfiqar A, Riaz A, Qurra-tul-Ain RM, Fiza I (2022) Morphological and molecular characterization of Golovinomyces ambrosiae on sunflower (Helianthus annuus) in Pakistan, with its impact on plant metabolites and relative mycorrhizal status. J Plant Dis Prot 129:253–260

    Article  CAS  Google Scholar 

  • Agarwal T, Malhotra A, Trivedi PC, Biyani M (2011) Biocontrol potential of Gliocladium virens against fungal pathogens isolated from chickpea, lentil and black gram seeds. J Agric Technol 7(6):1833–1839

    Google Scholar 

  • Ahmed AA, Dutta P (2019) Trichoderma asperellum mediated synthesis of silver nanoparticles: characterization and its physiological effects on tea [Camellia sinensis (L.) Kuntze var. assamica (J. Masters) Kitam.]. Int J Curr Microbiol App Sci 8(4):1215–1229

    Article  CAS  Google Scholar 

  • Alam SS, Sakamoto K, Inubushi K (2011) Biocontrol efficiency of Fusarium wilt diseases by a root-colonizing fungus Penicillium sp. Soil Sci Plant Nutr 57(2):204–212

    Article  Google Scholar 

  • Alghuthaymi MA, Rajkuberan C, Rajiv P, Kalia A, Bhardwaj K, Bhardwaj P, Abd-Elsalam KA, Valis M, Kuca K (2021) Nanohybrid antifungals for control of plant diseases: current status and future perspectives. J Fungi (Basel) 7(1):48

    Article  CAS  PubMed  Google Scholar 

  • Allsup CM, Lankau RA, Paige KN (2021) Herbivory and soil water availability induce changes in arbuscular mycorrhizal fungal abundance and composition. Microb Ecol 84(1):141–152

    Article  PubMed  Google Scholar 

  • Anonymous (2020) Rust pathogen for the biological control of the mile-a-minute weed. The Department of Agriculture, Fisheries and Forestry. media@agriculture.gov.au

  • Aseel DG, Rashad YM, Hammad SM (2019) Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against tomato mosaic virus. Sci Rep 9:9692

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G (2021) Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotech 19:86

    Article  Google Scholar 

  • Barton J (2012) Predictability of pathogen host range in classical biological control of weeds: an update. BioControl 57:289–305

    Article  Google Scholar 

  • Bastías DA, Martínez-Ghersa MA, Newman JA, Card SD, Mace WJ, Gundel PE (2018) Jasmonic acid regulation of the anti-herbivory mechanism conferred by fungal endophytes in grasses. J Ecol 106:2365–2379

    Article  Google Scholar 

  • Bhattacharya J, Nitnavare R, Shankhapal A, Ghosh S (2022) Chapter 14 – Microbially synthesized nanoparticles: aspect in plant disease management. In: Kumar A, Aswani R (eds) Radhakrishnan EK. Academic, Biocontrol mechanisms of endophytic microorganisms, pp 303–325

    Google Scholar 

  • Broberg M, Dubey M, Iqbal M, Gudmundssson M, Ihrmark K, Schroers HJ, Funck Jensen D, Brandström Durling M, Karlsson M (2021) Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in Clonostachys subgenus Bionectria (Fungi, Ascomycota, Hypocreales). Evol Appl 14:476–497

    Article  CAS  PubMed  Google Scholar 

  • Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:fiw114

    Article  PubMed  Google Scholar 

  • Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A (2015) An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197:869–881

    Article  CAS  PubMed  Google Scholar 

  • Collinge DB, Jensen DF, Rabiey M, Sarrocco S, Shaw MW, Shaw RH (2022) Biological control of plant diseases – what has been achieved and what is the direction? Plant Pathol 71:1024–1047

    Article  Google Scholar 

  • Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI (2021) Metal nanoparticles as novel antifungal agents for sustainable agriculture: current advances and future directions. J Fungi 7:1033

    Article  CAS  Google Scholar 

  • Darshan K, Aggarwal R, Bashyal BM, Singh J, Shanmugam V, Gurjar MS, Solanke AU (2020) Transcriptome profiling provides insights into potential antagonistic mechanisms involved in Chaetomium globosum against Bipolaris sorokiniana. Front Microbiol 11:2971

    Article  Google Scholar 

  • Demissie ZA, Witte T, Robinson KA, Sproule A, Foote SJ, Johnston A, Harris LJ, Overy DP, Loewen MC (2020) Transcriptomic and exometabolomic profiling reveals antagonistic and defensive modes of Clonostachys rosea action against Fusarium graminearum. Mol Plant-Microbe Interact 33:842–858

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5:715

    Article  PubMed  PubMed Central  Google Scholar 

  • De Vries S, von Dahlen JK, Schnake A, Ginschel S, Schulz B, Rose LE (2018) Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiol Ecol 94:fiy037

    PubMed  PubMed Central  Google Scholar 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133–148

    Article  Google Scholar 

  • Djonovic S, Vargas AW, Kolomiets VM, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor sm1 from the beneficial fungal Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droby S (2006) Biological control of postharvest diseases of fruits and vegetables: difficulties and challenges. Phytopathol Pol 39:105–117

    Google Scholar 

  • Elijah A, Adebayo MA, Azeez MB, Alao AM, Oke DA (2021) Fungi as veritable tool in current advances in nanobiotechnology. Heliyon 7:e08480

    Article  Google Scholar 

  • Faust K (2019) Microbial consortium design benefits from metabolic modeling. Trends Biotechnol 37:123–125

    Article  CAS  PubMed  Google Scholar 

  • Fraceto LF, Maruyama CR, Guilger M, Mishra S, Keswani C, Singh HB, de Lima R (2018) Trichoderma harzianum-based novel formulations: potential applications for management of next-gen agricultural challenges: applications of Trichoderma harzianum-based novel formulations. J Chem Technol Biotechnol 93:2056–2063

    Article  CAS  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32(5):593–600

    Article  CAS  PubMed  Google Scholar 

  • Gardner DE (2006) Plant pathogens as biocontrol agents in native Hawaiian ecosystems. Am Phytopathol Soc 17:225–228

    Google Scholar 

  • Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157

    Article  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guilger-Casagrande M, Lima RD (2019) Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol 7:287

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, Fraceto LF, de Lima R (2019) Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci Rep 9:14351

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanafy MH (2018) Myconanotechnology in veterinary sector: status quo and future perspectives. Int J Vet Sci Med 6(2):270–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan S, Wapshere AJ (1973) The biology of Puccinia chondrillina, a potential biological control agent of skeleton weed. Ann Appl Biol 74:325–332

    Article  Google Scholar 

  • Hennecke B, Arrowsmith L, Ten J (2021) Prioritising targets for biological control of weeds. Department of Agriculture, Fisheries and Forestry, Australia

    Google Scholar 

  • Hilbig BE, Allen EB (2019) Fungal pathogens and arbuscular mycorrhizal fungi of abandoned agricultural fields: potential limits to restoration. Invasive Plant Sci Manag 12:186–193

    Article  Google Scholar 

  • Hou S, Zhang Y, Li M, Liu H, Wu F, Hu J, Lin X (2019) Concomitant biocontrol of pepper Phytophthora blight by soil indigenous arbuscular mycorrhizal fungi via upfront film-mulching with reductive fertilizer and tobacco waste. J Soils Sediments 20:452–460

    Article  Google Scholar 

  • Huang D, Ma M, Wang Q, Zhang M, Jing G, Li C, Ma F (2020) Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiol Biochem 149:245–255

    Article  CAS  PubMed  Google Scholar 

  • Inbakani SA, Siva R (2017) Biosynthesis of silver nanoparticles using edible mushrooms and its bactericidal activities. Res J Pharm Tech 10(2):467–472

    Article  Google Scholar 

  • Ireland KB, Hunter GC, Wood A, Delaisse C, Morin L (2019) Evaluation of the rust fungus Puccinia rapipes for biological control of Lycium ferocissimum (African boxthorn) in Australia: life cycle, taxonomy and pathogenicity. Fung Biol 123(11):811–823

    Article  CAS  Google Scholar 

  • Jaloot AS, Owaid MN, Naeem GA, Muslim RF (2020) Mycosynthesizing and characterizing silver nanoparticles from the mushroom Inonotus hispidus (Hymenochaetaceae), and their antibacterial and antifungal activities. Environ Nanotechnol Monit Manag 14:100313

    Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40(1):411–441

    Article  CAS  PubMed  Google Scholar 

  • Jensen DF, Karlsson M, Lindahl BD (2017) Fungal–fungal interactions: from natural ecosystems to managed plant production, with emphasis on biological control of plant diseases. In: Dighton J, White JF (eds) The fungal community – its organization and role in the ecosystem. CRC Press, Boca Raton, pp 549–562

    Google Scholar 

  • Juntarawijit C, Juntarawijit Y (2018) Association between diabetes and pesticides: a case-control study among Thai farmers. Environ Health Prev Med 23:1–10

    Article  CAS  Google Scholar 

  • Keyser CA, Jensen B, Meyling NV (2016) Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed- borne pathogen in wheat. Pest Manag Sci 72:517–526

    Article  CAS  PubMed  Google Scholar 

  • Khande P, Shahi SK (2018) Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. J Nanostruct Chem 8(4):369–391

    Article  Google Scholar 

  • Klaus A, Petrovic P, Vunduk J, Pavlovic V, Van Griensven LJLD (2020) The antimicrobial activities of silver nanoparticles synthesized from medicinal mushrooms. Int J Med Mushrooms 22(9):869–883

    Article  PubMed  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10:845

    Article  PubMed  PubMed Central  Google Scholar 

  • Konappa N, Udayashankar AC, Dhamodaran N, Krishnamurthy S, Jagannath S, Uzma F, Pradeep CK, De Britto S, Chowdappa S, Jogaiah S (2021) Ameliorated antibacterial and antioxidant properties by Trichoderma harzianum mediated green synthesis of silver nanoparticles. Biomol Ther 11:535

    CAS  Google Scholar 

  • Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hams H, Belabess Z, Barka EA (2022) Biological control of plant pathogens: a global perspective. Microorganisms 10:596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larran S, Simon MR, Moreno MV, Siurana MS, Perelló A (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  Google Scholar 

  • Li F, Guo Y, Christensen MJ, Gao P, Li Y, Duan T (2018) An arbuscular mycorrhizal fungus and Epichloë festucae var. lolii reduce Bipolaris sorokiniana disease incidence and improve perennial ryegrass growth. Mycorrhiza 28:159–169

    Article  PubMed  Google Scholar 

  • Lin P, Zhang M, Wang M, Li Y, Liu J, Chen Y (2021) Inoculation with arbuscular mycorrhizal fungus modulates defense-related genes expression in banana seedlings susceptible to wilt disease. Plant Signal Behav 16:1884782

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107:928–936

    Article  CAS  PubMed  Google Scholar 

  • Liu K, McInroy JA, Hu CH, Kloepper JW (2018) Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis 102:67–72

    Article  PubMed  Google Scholar 

  • Lysøe E, Dees MW, Brurberg MB (2017) A three-way transcriptomic interaction study of a biocontrol agent (Clonostachys rosea), a fungal pathogen (Helminthosporium solani), and a potato host (Solanum tuberosum). Mol Plant-Microbe Interact 30:646–655

    Article  PubMed  Google Scholar 

  • Maharjan S, Devkota A, Shrestha BB, Baniya CB, Rangaswamy M, Jha PK (2020) Prevalence of Puccinia abrupta var. partheniicola and its impact on Parthenium hysterophorus in Kathmandu Valley, Nepal. J Ecol Environ:44–25

    Google Scholar 

  • Mansoor S, Zahoor I, Baba TR, Padder SA, Bhat ZA, Koul AM, Jiang L (2021) Fabrication of silver nanoparticles against fungal pathogens. Front Nanotechnol 3:679358

    Article  Google Scholar 

  • Massart S, Martinez-Medina M, Jijakli MH (2015a) Biological control in the microbiome era: challenges and opportunities. Biol Control 89:98–108

    Article  Google Scholar 

  • Massart S, Perazzolli M, Höfte M, Pertot I, Jijakli MH (2015b) Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. BioControl 60:725–746

    Article  CAS  Google Scholar 

  • McDougal R, Stewart A, Bradshaw R (2012) Transformation of Cyclaneusma minus with green fluorescent protein (GFP) to enable screening of fungi for biocontrol activity. Forests 3(1):83–94

    Article  Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Minchev Z, Kostenko O, Soler R, Pozo MJ (2021) Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Front Plant Sci 12:2428

    Article  Google Scholar 

  • Mishra V, Ellouze W, Howard R (2018) Utility of arbuscular mycorrhizal fungi for improved production and disease mitigation in organic and hydroponic greenhouse crops. J Hortic 5:237

    Article  Google Scholar 

  • Mittal D, Kaur G, Ali S (2020) Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotechnol 2:5

    Article  Google Scholar 

  • Mitter B, Brader G, Pfaffenbichler N, Sessitsch A (2019) Next generation microbiome applications for crop production - limitations and the need of knowledge-based solutions. Curr Opin Microbiol 49:59–65

    Article  CAS  PubMed  Google Scholar 

  • Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK (2018) Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23(3):655

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanta Y, Singdevsachan S, Parida U, Panda S, Mohanta TK, Bae H (2016) Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from the Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnol 10:184–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Molnár Z, Bódai V, Szakacs G, Erdélyi B, Fogarassy Z, Sáfrán G (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Moradi F, Sedaghat S, Moradi O, Salmanabadi SA (2021) Review on green nano-biosynthesis of silver nanoparticles and their biological activities: with an emphasis on medicinal plants. Inorg Nano-Met Chem 51:133–142

    Article  CAS  Google Scholar 

  • Morin L, Evans KJ, Jourdan M, Gomez DR, Scott JK (2011) Use of a trap garden to find additional genetically distinct isolates of the rust fungus Phragmidium violaceum to enhance biological control of European blackberry in Australia. Eur J Plant Pathol 131:289–303

    Article  Google Scholar 

  • Morin L, Aveyard R, Lidbetter JR, Wilson PG (2012) Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. PLoS One 7:e35434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morley TB, Morin L (2008) Progress on boneseed (Chrysanthemoides monilifera subsp. monilifera (L.) Norlindh) biological control: the boneseed leaf bucklemite Aceria (Keifer) sp., the lacy-winged seed fly Mesoclanis magnipalpis Bezzi and the boneseed rust Endophyllum osteospermi (Doidge) A. R. Wood. Plant Prot Q 23:29–31

    Google Scholar 

  • Nally MC, Pescea VM, Maturanoa YP, Muñoze CJ, Combinab M, Toroa ME (2012) Biocontrol of Botrytis cinerea in table grapes by non-pathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biol Technol 64:40–48

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13

    Article  CAS  Google Scholar 

  • Niu B, Wang W, Yuan Z, Sederoff RR, Sederoff H, Chiang VL, Borriss R (2020) Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front Microbiol 11:585404

    Article  PubMed  PubMed Central  Google Scholar 

  • Numata M, Hasegawa T, Fujisawa T, Sakurai K, Shinkai S (2004) β-1,3-glucan (Schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures. Org Lett 6(24):4447–4450

    Article  CAS  PubMed  Google Scholar 

  • O’Brien PA (2017) Biological control of plant diseases. Australas Plant Pathol 46(4):293–304

    Article  Google Scholar 

  • Ons L, Bylemans D, Thevissen K, Cammue BPA (2020) Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 8(12):1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owaid MN (2019) Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: review. Environ Nanotechnol Monit Manag 12:100256

    Google Scholar 

  • Owaid MN, Ibraheem IJ (2017) Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur J Nanomed 9:5–23

    Article  CAS  Google Scholar 

  • Owaid MN, Naeem GA, Muslim RF, Oleiwi RS (2020) Synthesis, characterization and antitumor efficacy of silver nanoparticle from Agaricus bisporus pileus, Basidiomycota. Walailak J Sci Technol 17:75–87

    Article  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instruct 2:1117–1142

    Google Scholar 

  • Palmieri D, Vitullo D, De Curtis F, Lima G (2017) A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant Soil 412:425–439

    Article  CAS  Google Scholar 

  • Palmieri D, Ianiri G, Del Grosso C, Barone G, De Curtis F, Castoria R, Lima G (2022) Advances and perspectives in the use of biocontrol agents against fungal plant diseases. Horticulturae 8:577

    Article  Google Scholar 

  • Pandit MA, Kumar J, Gulati S, Bhandari N, Mehta P, Katyal R, Rawat CD, Mishra V, Kaur J (2022) Major biological control strategies for plant pathogens. Pathogens 11(2):273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Li SJ, Yan J, Tang Y, Cheng JP, Gao AJ, Yao X, Ruan JJ, Xu BL (2021) Research progress on phytopathogenic fungi and their role as biocontrol agents. Front Microbiol 12:670135

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollard KM, Gange AC, Seier MK, Ellison CA (2022) A semi-natural evaluation of the potential of the rust fungus Puccinia komarovii var. glanduliferae as a biocontrol agent of Impatiens glandulifera. Biol Control 165:104786

    Article  Google Scholar 

  • Poveda J, Baptista P (2021) Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: mycorrhizal and endophytic fungi. Crop Prot 146:105672

    Article  CAS  Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    Article  PubMed  PubMed Central  Google Scholar 

  • Poveda J, Roeschlin RA, Marano MR, Favaro MA (2021) Microorganisms as biocontrol agents against bacterial citrus diseases. Biol Control 158:104602

    Article  Google Scholar 

  • Pozo MJ, Jung SC, Martínez-Medina A, López-Ráez JA, Azcón-Aguilar C, Barea JM (2013) Root allies: arbuscular mycorrhizal fungi help plants to cope with biotic stresses. In: Aroca R (ed) Symbiotic endophytes. Springer, Cham, pp 289–307

    Chapter  Google Scholar 

  • Pozo MJ, Zabalgogeazcoa I, Vazquez de Aldana BR, Martinez-Medina A (2021) Untapping the potential of plant mycobiomes for applications in agriculture. Curr Opin Plant Biol 60:102034

    Article  CAS  PubMed  Google Scholar 

  • Rabiey M, Hailey LE, Roy SR, Grenz K, Al-Zadjali MA, Barrett GA, Jackson RW (2019) Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health? Eur J Plant Pathol 155:711–729

    Article  Google Scholar 

  • Rai M, Bonde S, Golinska P, TrzciÅ„ska-Wencel J, Gade A, Abd-Elsalam K (2021) Fusarium as a novel fungus for the synthesis of nanoparticles: mechanism and applications. J Fungi 7(2):139

    Article  CAS  Google Scholar 

  • Ramírez-Valdespino CA, Orrantia-Borunda E (2021) Trichoderma and nanotechnology in sustainable agriculture: a review. Front Fungal Biol 2:764675

    Article  Google Scholar 

  • Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA (2020) Screening for novel biocontrol agents applicable in plant disease management—a review. Biol Control 144:104240

    Article  CAS  Google Scholar 

  • Salvadori MR, Ando RA, Oller Do Nascimento CA, Corrêa B (2014) Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J Environ Sci Health 49(11):1286–1295

    Article  CAS  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Gulati A (2017) Integrated translatome and proteome: approach for accurate portraying of widespread multifunctional aspects of Trichoderma. Front Microbiol 8:1602

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw S, Le Cocq K, Paszkiewicz K, Moore K, Winsbury R, de Torres ZM, Studholme DJ, Salmon D, Thornton CR, Grant MR (2016) Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. Mol Plant Pathol 17:1425–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva ME, Uriostegui MA, Millán-Orozco J, Gives PM, Hernández EL, Braga FR (2017) Predatory activity of Butlerius nematodes and nematophagous fungi against Haemonchus contortus infective larvae. Rev Bras Parasitol Vet 26(1):92–95

    Article  PubMed  Google Scholar 

  • Singh I, Giri B (2017) Arbuscular mycorrhiza mediated control of plant pathogens. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza—nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 131–160

    Chapter  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Naveenkumar R, Muthukumar A (2019) Arbuscular mycorrhizal fungi and their effectiveness against soil borne diseases. In: Khan MR, Mukhopadhyay AN, Pandey RN, Thakur MP, Singh D (eds) Bio-intensive approaches: application and effectiveness in plant diseases management. Today & Tomorrow’s Printers and Publishers, New Delhi, pp 183–199

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Sousa F, Ferreira D, Reis S, Costa P (2020) Current insights on antifungal therapy: novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals 13(9):248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava DA, Harris R, Breuer G, Levy M (2021) Secretion-based modes of action of biocontrol agents with a focus on Pseudozyma aphidis. Plan Theory 10:210

    CAS  Google Scholar 

  • Stenberg JA, Sundh I, Becher PG, Björkman C, Dubey M, Egan PA, Friberg H, Gil JF, Jensen DF, Jonsson M, Karlsson M, Khalil S, Ninkovic V, Rehermann G, Vetukuri RR, Viketoft M (2021) When is it biological control? A framework of definitions, mechanisms, and classifications. J Pest Sc 94:665–676

    Article  Google Scholar 

  • Tanner RA, Pollard KM, Varia S, Evans HC, Ellison CA (2015) First release of a fungal classical biocontrol agent against an invasive alien weed in Europe: biology of the rust, Puccinia komarovii var. glanduliferae. Plant Pathol 64:1130–1139

    Article  Google Scholar 

  • Tariq M, Khan A, Asif M, Khan F, Ansari T, Shariq M, Siddiqui MA (2020) Biological control: a sustainable and practical approach for plant disease management. Acta Agric Scand, Section B Soil Plant Sci 70(6):507–524

    CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  CAS  PubMed  Google Scholar 

  • Thambugala KM, Daranagama DA, Phillips AJL, Kannangara SD, Promputtha I (2020) Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Front Cell Infect Microbiol 10:604923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomah AA, Alamer ISA, Li B, Zhang JZ (2020) Mycosynthesis of silver nanoparticles using screened Trichoderma isolates and their antifungal activity against Sclerotinia sclerotiorum. Nano 10:1955

    CAS  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  CAS  PubMed  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences J 1:65–79

    Article  CAS  Google Scholar 

  • Vahabi K, Reichelt M, Scholz SS, Furch AC, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R (2018) Alternaria brassicae induces systemic jasmonate responses in Arabidopsis which travel to neighboring plants via a Piriformospora indica hyphal network and activate abscisic acid responses. Front Plant Sci 9:626

    Article  PubMed  PubMed Central  Google Scholar 

  • Vargas-Inciarte L, Fuenmayor-Arrieta Y, LuzardoMéndez M, Costa-Jardin MD, Vera A, Carmona D, Homen-Pereira M, Costa-Jardin PD, San-Blas E (2019) Use of different Trichoderma species in cherry type tomatoes (Solanum lycopersicum L.) against Fusarium oxysporum wilt in tropical greenhouses. Agronomía Costarricense 43:85–100

    Google Scholar 

  • Varma A, Choudhary DK (2019) Mycorrhizosphere and pedogenesis. Springer, Singapore

    Book  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol 49:509–514

    Article  Google Scholar 

  • Kannan V, Sureendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A (2012) Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354:335–345

    Article  CAS  Google Scholar 

  • Wang CX, Li XL, Song FQ, Wang GQ (2012) Effects of arbuscular mycorrhizal fungi on fusarium wilt and disease resistance-related enzyme activity in cucumber seedling root. Chin J Eco-Agric 20:53–57

    Article  Google Scholar 

  • Wang Q, Coleman JJ (2019) Progress and challenges: development and implementation of CRISPR/Cas9 technology in filamentous fungi. Comput Struct Biotechnol J 17:761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng W, Yan J, Zhou M, Yao X, Gao A, Ma C, Cheng J, Ruan J (2022) Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases. Microorganisms 10:1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win TT, Bo B, Malec P, Fu P (2021) The effect of a consortium of Penicillium sp. and Bacillus spp. in suppressing banana fungal diseases caused by Fusarium sp. and Alternaria sp. J Appl Microbiol 131:1890–1908

    Article  CAS  PubMed  Google Scholar 

  • Youssef K, Hashim AF, Hussien A, Abd-Elsalam KA (2017) Fungi as ecosynthesizers for nanoparticles and their application in agriculture. Fungal nanotechnology Springer 116:55–75

    Article  Google Scholar 

  • Yandoc-Ables CB, Rosskopf EN, Charudattan R (2006) Plant pathogens at work: progress and possibilities for weed biocontrol. The American Phytopathological Society, Plant Pathology, Department, University of Florida, Gainesville

    Google Scholar 

  • Zaki SA, Ouf SA, Albarakaty FM, Habeb MM, Aly AA, Abd-Elsalam KA (2021) Trichoderma harzianum-mediated ZnO nanoparticles: a green tool for controlling soil-borne pathogens in cotton. J Fungi 7:952

    Article  CAS  Google Scholar 

  • Zaki SA, Ouf SA Abd-Elsalam, K.A, Asran AA, Hassan MM, Kalia A, Albarakaty FM (2022) Trichogenic silver-based nanoparticles for suppression of fungi involved in damping-off of cotton seedlings. Microorganisms 10:344

    Google Scholar 

  • Zhao H, Zhou T, Xie J, Cheng J, Chen T, Jiang D, Fu Y (2020) Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum. Microb Genom 6:e000345

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najam-ul-Sehar Afshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afshan, NuS. (2023). Recent Advancement in Fungal Biocontrol Agents. In: Rashad, Y.M., Baka, Z.A.M., Moussa, T.A.A. (eds) Plant Mycobiome. Springer, Cham. https://doi.org/10.1007/978-3-031-28307-9_8

Download citation

Publish with us

Policies and ethics