Skip to main content
Log in

Single-column model and large eddy simulation of the evening transition in the planetary boundary layer

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University PBL scheme. These results are compared with two large eddy simulations for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, which led to a gradual decrease of the eddy diffusivity, and replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature and wind speed (up to 0.5 K, and 0.6 m s−1, respectively), whereas the changes in specific humidity were modest (up to 0.003 g kg−1). Although the representation of the convective decay in the standard parameterization did not show noticeable improvements in the simulation of state variables for the selected Wangara case study day, small changes in the eddy diffusivity over consecutive hours throughout the night can impact the simulation of distribution of trace gases in air quality models. So, this work points out the relevance of simulating the turbulent decay during sunset, which could help air quality forecast models to better represent the distribution of pollutants storage in the residual layer during the entire night.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht

    Book  Google Scholar 

  2. Caughey SJ, Wyngaard JC, Kaimal JC (1979) Turbulence in the evolving stable boundary layer. J Atmos Sci 36:1041–1052

    Article  Google Scholar 

  3. Grant ALM (1997) An observational study of the evening transition boundary-layer. Q J R Meteorol Soc 123:657–677

    Article  Google Scholar 

  4. Beare RJ, Edwards JM, Lapworth AJ (2006) Simulation of the observed evening transition and nocturnal boundary layers: large-eddy simulation. Q J R Meteorol Soc 132:81–99

    Article  Google Scholar 

  5. Mahrt L (1981) The early evening boundary layer transition. Q J R Meteorol Soc 107:329–343

    Article  Google Scholar 

  6. Taylor GI (1917) The formation of fog and mist. Q J R Meteorol Soc 43:241–268

    Article  Google Scholar 

  7. Richardson LF (1920) The supply of energy from and to atmospheric eddies. Proc R Soc Lond A97:354–373

    Article  Google Scholar 

  8. Acevedo OC, Fitzjarrald DR (2001) The Early Evening Surface-Layer Transition: temporal and Spatial Variability. J Atmos Sci 58:2650–2667

    Article  Google Scholar 

  9. Grimsdell AW, Angevine WM (2002) Observations of the afternoon transition of the convective boundary layer. J Appl Meteorol 41:3–11

    Article  Google Scholar 

  10. Brazel AJ, Fernando HJS, Hurt JCR, Selover N, Hedquist BC, Pardyjak E (2005) Evening transition observations in Phoenix, Arizona. J Appl Meteorol 44:99–112

    Article  Google Scholar 

  11. Edwards JM, Beare RJ, Lapworth AJ (2006) Simulation of the observed evening transition and nocturnal boundary layers: single-column modelling. Q J R Meteorol Soc 132:61–80

    Article  Google Scholar 

  12. Sastre M, Yague C, Roman CC, Maqueda G, Salamanca F, Viana S (2012) Evening transitions of the atmospheric boundary layers: characterization case studies and WRF simulations. Adv Sci Res 8:39–44. doi:10.5194/asr-8-39-2012

    Article  Google Scholar 

  13. Kosovic B, Curry JAA (2000) large eddy simulation study of a quasi-steady stably stratified atmospheric boundary layer. J Atmos Sci 57:1052–1068

    Article  Google Scholar 

  14. Beare RJ, MacVean MK, Holtslag AAM, Cuxart J, Esau I, Golaz J-C, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, McCabe A, Moene AF, Noh Y, Raasch S, Sullivan PP (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Bound Layer Meteorol 118:247–272

    Article  Google Scholar 

  15. Noh Y, Cheon WG, Hong S-Y, Raasch S (2003) Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound Layer Meteorol 107:401–427

    Article  Google Scholar 

  16. Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Bound Layer Meteorol 37:129–148

    Article  Google Scholar 

  17. Sharan M, Gopalakrishnan SG (1997) Comparative evaluation of eddy exchange coefficients for strong and weak wind stable boundary layer modeling. J Appl Meteorol 36:545–559

    Article  Google Scholar 

  18. Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars ACM, Cheng A, Conangla L, Ek MB, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound Layer Meteorol 118:273–303

    Article  Google Scholar 

  19. Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J Atmos Sci 63:920–935

    Article  Google Scholar 

  20. Mauritsen T, Svensson G, Zilitinkevich SS, Esau I, Enger L, Grisogono B (2007) A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J Atmos Sci 64:4113–4126

    Article  Google Scholar 

  21. Baas P, Bosveld FC, Lenderink G, van Meijgaard E, Holtslag AAM (2010) How to design single-column model experiments for comparison with observed nocturnal low-level jets. Q J R Meteorol Soc 136:671–684

    Google Scholar 

  22. Kumar V, Svensson G, Holtslag AAM, Meneveau C, Parlange MB (2010) Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of diurnal atmospheric boundary layer flow. J Appl Meteorol Climatol 49:1496–1516. doi:10.1175/2010JAMC2145.1

    Article  Google Scholar 

  23. Bosveld FC, Baas P, Steeneveld G-J, Holtslag AAM, Angevine WM, Bazile E, Bruijn E, Deacu D, Edwards J, Ek M, Larson V, Pleim J, Raschendorfer M, Svensson G (2014) The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: results and process understanding. Bound Layer Meteorol 152:157–187. doi:10.1007/s10546-014-9919-1

    Google Scholar 

  24. Carvalho JC, Degrazia GA, Domenico A, Goulart AG, Cuchiara GC, Mortarini L (2010) Simulating the characteristic patterns of the dispersion during sunset PBL. Atmos Res 98:274–284. doi:10.1016/j.atmosres.2010.06.009

    Article  Google Scholar 

  25. Clarke RH, Dyer AJ, Brook RR, Reid DG, Troup AJ (1971) The Wangara experiment: boundary layer data. Div Meteorol Phys Tech 19:362

    Google Scholar 

  26. Yamada T, Mellor G (1975) A simulation of the Wangara atmospheric boundary layer data. J Atmos Sci 32:2309–2329

    Article  Google Scholar 

  27. André JC, Moor G, Lacarrere P, Therry G, Vachat R (1978) Modeling the 24-hour evolution of the mean and turbulent structure of the planetary boundary layer. J Atmos Sci 35:1861–1883

    Article  Google Scholar 

  28. Musson-Genon L (1995) Comparison of different simple turbulence closures with a one-dimensional boundary layer model. Mon Weather Rev 123:163–180

    Article  Google Scholar 

  29. Hacker JP, Rostkier-Edelstein D (2007) PBL state estimation with surface observations—a column model, and an ensemble filter. Mon Weather Rev 135:2958–2972. doi:10.1175/MWR3443.1

    Article  Google Scholar 

  30. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang H-Y, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. NCAR Technical Note NCAR/TN-475STR. 113

  31. McNider RT, Pielke RA (1981) Diurnal boundary-layer development over sloping terrain. J Atmos Sci 38:2198–2212

    Article  Google Scholar 

  32. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120

    Article  Google Scholar 

  33. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough S (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  34. Dudhia J (1989) Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107

    Article  Google Scholar 

  35. Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel GJ, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp 11–15

  36. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteorol 9:857–861

    Article  Google Scholar 

  37. Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721

    Article  Google Scholar 

  38. Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J R Meteorol Soc 96:67–90

    Article  Google Scholar 

  39. Zhang D-L, Anthes RA (1982) A high-resolution model of the planetary boundary layer—sensitivity tests and comparisons with SESAME-79 data. J Appl Meteorol 21:1594–1609

    Article  Google Scholar 

  40. Moeng CH, Dudhia J, Klemp J, Sullivan P (2007) Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon Weather Rev 135:2295–2311. doi:10.1175/MWR3406.1

    Article  Google Scholar 

  41. Lenschow DH, Wyngaard JC, Penell WT (1980) Mean field and second-moment budgets in a baroclinic, convective boundary layer. J Atmos Sci 37:1313–1326

    Article  Google Scholar 

  42. Willis GE, Deardorff JW (1979) Laboratory observations of turbulent penetrative-convection platforms. J Geophys Res 84:295–302

    Article  Google Scholar 

  43. Schmidt H, Schumann U (1989) Coherent structure of the convective boundary layer derived from large-eddy simulations. J Fluid Mech 200:511–562

    Article  Google Scholar 

  44. Nieuwstadt FTM, Mason PJ, Moeng CH, Schumann U (1993) Large-eddy simulation of the convective boundary layer: a comparison of four computer codes. In: Durst F et al (eds) Turbulent shear flows 8, vol 431. Springer, Berlin, pp 343–367. doi:10.1007/978-3-642-77674-8_24

    Google Scholar 

  45. Moeng CH, Sullivan PPA (1994) comparison of shear-and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51:999–1022

    Article  Google Scholar 

  46. Sullivan PP, McWilliams JC, Moeng C-H (1994) A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound Layer Meteorol 71:247–276. doi:10.1007/BF00713741

    Article  Google Scholar 

  47. Yamaguchi T, Feingold G (2012) Technical note: large-eddy simulation of cloudy boundary layer with the Advanced Research WRF model. J Adv Model Earth Syst 4:M09003. doi:10.1029/2012MS000164

    Article  Google Scholar 

  48. Khairoutdinov MF, Randall DA (2003) Cloud resolving modeling of the ARM summer 1997 IOP: model formulation, results, uncertainties, and sensitivities. J Atmos Sci 60:607–625. doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2

    Article  Google Scholar 

  49. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr AkadNauk SSSR Geofiz 24:163–187

    Google Scholar 

  50. Wyngaard JC, Coté OR (1974) The evolution of a convective planetary boundary layer—a higher-order-closure model study. Bound Layer Meteorol 7:289–308. doi:10.1007/BF00240833

    Article  Google Scholar 

  51. Sun W-Y, Ogura Y (1980) Modeling the evolution of the convective planetary boundary layer. J Atmos Sci 37:1558–1572

    Article  Google Scholar 

  52. Sun W-Y, Chang C-Z (1986) Diffusion model for a convective layer. Part I: numerical simulation of convective boundary layer. J Clim Appl Meteorol 25:1445–1453

    Article  Google Scholar 

  53. Xue M, Zong J, Drogemeier KK (1996) Parameterization of PBL turbulence in a multi-scale non-hydrostatic model. In: 11th Conference on numerical weather prediction, Norfolk, VA, American Meteor Society, pp 363–365

  54. Hicks BB (1981) An analysis of Wangara micrometeorology: Surface stress, sensible heat, evaporation, and dewfall. NOAA Tech. Memo. ERL ARL-104, NOAA/Air Resources Laboratories, Silver Spring, MD, 36

  55. Basu S, Vinuesa J-F, Swift A (2008) Dynamic LES modeling of a diurnal cycle. J Appl Meteorol Climatol 47:1156–1174. doi:10.1175/2007JAMC1677.1

    Article  Google Scholar 

  56. Rappenglück B, Perna R, Zhong S, Morris GA (2008) An analysis of the vertical structure of the atmosphere and the upper-level meteorology and their impact on surface ozone levels in Houston/TX. J Geophys Res 113:D17315. doi:10.1029/2007JD009745

    Article  Google Scholar 

  57. Mahrt L (1999) Stratified atmospheric boundary layers. Bound-Layer Meteor 90:375–396. doi:10.1023/A:1001765727956

  58. Darbieu C, Lohou F, Lothon M, Vilà-Guerau de Arellano J, Couvereux F, Durand P, Pino D, Patton EG, Nilsson E, Blay-Carreras E, Gioli B (2015) Turbulence vertical structure of the boundary layer during the late afternoon transition. Atmos Chem Phys 15:10071–10086. doi:10.5194/acp-15-10071-2015

    Article  Google Scholar 

  59. Rizza U, Miglietta MM, Degrazia GA, Acevedo OC, Marques EP (2013) Sunset decay of the convective turbulence with large-eddy simulation under realistic conditions. Phys A 392:4481–4490. doi:10.1016/j.physa.2013.05.009

    Article  Google Scholar 

  60. Lothon M, Lohou F, Pino D, Couvreux F, Pardyjak ER, Reuder J, Vilà-Guerau de Arellano J, Durand P, Hartogensis O, Legain D, Augustin P, Gioli B, Lenschow DH, Faloona I, Yagüe C, Alexander DC, Angevine WM, Bargain E, Barrié J, Bazile E, Bezombes Y, Blay-Carreras E, van deBoer A, Boichard JL, Bourdon A, Butet A, Campistron B, de Coster O, Cuxart J, Dabas A, Darbieu C, Deboudt K, Delbarre H, Derrien S, Flament P, Fourmentin M, Garai A, Gibert F, Graf A, Groebner J, Guichard F, Jiménez MA, Jonassen M, van den Kroonenberg A, Magliulo V, Martin S, Martinez D, Mastrorillo L, Moene AF, Molinos F, Moulin E, Pietersen HP, Piguet B, Pique E, RománCascón C, Rufin-Soler C, Saïd F, Sastre-Marugán M, Seity Y, Steeneveld GJ, Toscano P, Traullé O, Tzanos D, Wacker S, Wildmann N, Zaldei A (2014) The BLLAST field experiment: boundary-Layer Late Afternoon and Sunset Turbulence. Atmos Chem Phys 14:10931–10960. doi:10.5194/acp-14-10931-2014

    Article  Google Scholar 

  61. Shaw WJ, Barnard JC (2002) Scales of turbulence decay from observations and direct numerical simulations. In: Proceedings of the 15th symposium on boundary layers and turbulence, 15–19 July 2002, Wageningen

  62. Sorbjan Z (1997) Decay of convective turbulence revisited. Bound Layer Meteorol 82:503–517. doi:10.1023/A:1000231524314

    Article  Google Scholar 

  63. Nadeau DF, Pardyjak ER, Higgins CW, Fernando HJS, Parlange MB (2011) A simple model for the afternoon and early evening decay of convective turbulence over different land surfaces. Bound Layer Meteorol 141:301–324

    Article  Google Scholar 

  64. Nieuwstadt FTM, Brost RA (1986) The decay of convective turbulence. J Atmos Sci 43:532–546

    Article  Google Scholar 

  65. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi:10.1175/MWR3199.1

    Article  Google Scholar 

  66. Foken T (2006) 50 years of the Monin–Obukhov similarity theory. Bound Layer Meteorol 119:431–447. doi:10.1007/s10546-006-9048-6

    Article  Google Scholar 

  67. Nielsen-Gammon J, Hu X, Zhang F, Pleim J (2010) Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon Weather Rev 138:3400–3417. doi:10.1175/2010MWR3292.1

    Article  Google Scholar 

  68. Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216

    Article  Google Scholar 

  69. Degrazia GA, Anfossi D, Carvalho JC, Mangia C, Tirabassi T (2000) Turbulence parameterization for PBL dispersion models in all stability conditions. Atmos Environ 34:3575–3583

    Article  Google Scholar 

  70. Garrat JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge

    Google Scholar 

  71. Goulart AG, Vilhena M, Degrazia G, Flores D (2007) Vertical, Lateral and longitudinal eddy diffusivities for a decaying turbulence in the convective boundary layer. Ecol Model 204:516–522. doi:10.1016/j.ecolmodel.2007.02.004

    Article  Google Scholar 

  72. Kristensen L, Lenschow D, Kirkegaard P, Courtney M (1989) The spectral velocity tensor for homogeneous boundary layer. Bound Layer Meteorol 47:149–193. doi:10.1007/BF00122327

    Article  Google Scholar 

  73. Miao JF, Chen D, Wyser K, Borne K, Lindgren J, Strandevall MKS, Thorsson S, Achberger C, Almkvist E (2008) Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: influence of PBL and LSM parameterizations. Meteorol Atmos Phys 99:77–103. doi:10.1007/s00703-007-0267-2

    Article  Google Scholar 

  74. Hu X-M, Klein PM, Xue M (2013) Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J Geophys Res 118:10490–10505. doi:10.1002/jgrd.50823

    Google Scholar 

  75. Wang C, Jin S (2014) Error features and their possible causes in simulated low-level winds by WRF at a wind farm. Wind Energy 17:1315–1325. doi:10.1002/we.1635

    Google Scholar 

  76. Zhang H, Pu Z, Zhang X (2013) Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Weather Forecast 28:893–914. doi:10.1175/WAF-D-12-00109.1

    Article  Google Scholar 

  77. Ngan F, Kim H, Lee P, Al-Wali K, Dornblaser B (2013) A study of nocturnal surface wind speed overprediction by the WRF-ARW model in Southeastern Texas. J.Appl Meteorol Climatol 52:2638–2653. doi:10.1175/JAMC-D-13-060.1

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support provided by Coordination for the Improvement of Higher Education Personnel (CAPES). Anna Fitch at NCAR is acknowledged for providing updated WRF LES packages for WRF version 3.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Cuchiara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuchiara, G.C., Rappenglück, B. Single-column model and large eddy simulation of the evening transition in the planetary boundary layer. Environ Fluid Mech 17, 777–798 (2017). https://doi.org/10.1007/s10652-017-9518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-017-9518-z

Keywords

Navigation