Skip to main content
Log in

Analysis of a teacher’s pedagogical arguments using Toulmin’s model and argumentation schemes

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

In this article, we elaborate methodologies to study the argumentation speech of a teacher involved in argumentative activities. The standard tool of analysis of teachers’ argumentation concerning pedagogical matters is Toulmin’s model. The theory of argumentation schemes offers an alternative perspective on the analysis of arguments. We propose an integrated way of analysis employing Toulmin’s model and argumentation scheme, based on Walton’s taxonomy. We examine the change of pedagogical argumentation of a teacher that participated in a graduate course that was based on the analysis of hypothetical classroom scenarios on the teaching of calculus in high school. By exhibiting our methodological analysis in a particular case, we show that by adopting two different analytical perspectives, we gain a deeper understanding of the structure and quality of teachers’ argumentation on pedagogical matters. The integration of the two qualitative methodologies could help identify several aspects of possible construction of knowledge in argumentative activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberdein, A. (2007). Fallacies in mathematics. Proceedings of the British Society for Research into Learning Mathematics, 27, 1–6.

    Google Scholar 

  • Ainley, J., & Pratt, D. (2002). Purpose and utility in pedagogic task design. In A. Cockburn & E. Nardi (Eds.), Proceedings of the 26th annual conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 17–24). Norwich: PME.

    Google Scholar 

  • Aliseda, D. (2003). Mathematical reasoning vs. abductive reasoning: A structural approach. Synthese, 134, 25–44.

    Article  Google Scholar 

  • Barnett, C. (1991). Building a case-based curriculum to enhance the pedagogical content knowledge of Mathematics teachers. Journal of Teacher Education, 42, 263–272.

    Article  Google Scholar 

  • Biza, I., Nardi, E., & Zachariades, T. (2007). Using tasks to explore teacher knowledge in situation-specific contexts. Journal of Mathematics Teacher Education, 10, 301–309.

    Article  Google Scholar 

  • Brousseau, G. (1997). Theory of didactical situations in mathematics. Netherlands: Springer.

  • Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.

    Google Scholar 

  • Evens, H., & Houssart, J. (2004). Categorizing pupils’ written answers to a mathematics test question: ‘I know but I can’t explain’. Educational Research, 46, 269–282.

    Article  Google Scholar 

  • Finnochiaro, M. (2008). Arguments, meta-arguments, and metadialogues: A reconstruction of krabbe, govier, and woods. Argumentation, 21, 253–268.

    Article  Google Scholar 

  • Forman, E. A., Larreamendy-Joerns, J., Stein, M. K., & Brown, C. A. (1998). You’re going to want to find out which and prove it: Collective argumentation in a mathematics classroom. Learning and Instruction, 8(6), 527–548.

    Article  Google Scholar 

  • Freeman, J. B. (2005). Systematizing Toulmin’s warrants: An epistemic approach. Argumentation, 19(3), 331–346.

    Article  Google Scholar 

  • Giannakoulias, E., Mastoridis, E., Potari, D., & Zachariades, T. (2010). Studying teachers’ mathematical argumentation in the context of refuting students’ invalid claims. Journal of Mathematical Behavior, 9, 160–168.

    Article  Google Scholar 

  • Godden, D., & Walton, D. (2007). Advances in the theory of argumentation schemes and critical questions. Informal Logic, 27, 267–292.

    Google Scholar 

  • Hancock, D. R., & Algozzine, B. (2006). Doing case study research: A practical guide for beginning researchers. New York: Teachers College.

    Google Scholar 

  • Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal for Research in Mathematics Education, 32, 195–222.

    Article  Google Scholar 

  • Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3–21.

    Article  Google Scholar 

  • Juthe, A. (2005). Arguments by analogy. Argumentation, 19, 1–27.

    Article  Google Scholar 

  • Knipping, C. (2008). A method for revealing structures of argumentation in classroom proving processes. ZDM The International Journal on Mathematics Education, 40(3), 427–441.

    Article  Google Scholar 

  • Knipping, C., & Reid, D. (2013). Revealing structures of argumentations in classroom proving processes. In A. Aberdein & I. J. Dove (Eds.), The argument of mathematics (pp. 119–146). Netherlands: Springer.

    Chapter  Google Scholar 

  • Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentative reasoning. Cognition and Instruction, 15, 287–315.

    Article  Google Scholar 

  • Mason, J. (1998). Enabling teachers to be real teachers: Necessary levels of awareness and structure of attention. Journal of Mathematics Teacher Education, 1, 243–267.

    Article  Google Scholar 

  • Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and Instruction, 14, 139–179.

    Article  Google Scholar 

  • Metaxas, N. (2015). Mathematical argumentation of students participating in a mathematics–information technology project. International Research in Education, 3(1), 82–92.

    Article  Google Scholar 

  • Metaxas, N., Potari, D., & Zachariades, T. (2009). Studying teachers’ pedagogical argumentation. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33 rd conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 121–128). Thessaloniki: PME.

    Google Scholar 

  • Nardi, E., Biza, E., & Zachariades, T. (2012). ‘Warrant’ revisited: Integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation. Educational Studies in Mathematics, 79, 157–173.

    Article  Google Scholar 

  • Ohlsson, S. (1992). The cognitive skill of theory articulation: A neglected aspect of science education. Science & Education, 1, 181–189.

    Article  Google Scholar 

  • Pease, A., & Aberdein, A. (2011). Five theories of reasoning: Inter-connections and applications to mathematics. Logic and Logical Philosophy, 20(1–2), 7–57.

    Google Scholar 

  • Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23–41.

    Article  Google Scholar 

  • Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM, 40(3), 385–400.

    Article  Google Scholar 

  • Schwarz, B. (2009). Argumentation and learning. In N. Muller Mirza & A.-N. Perret-Clermont (Eds.), Argumentation and education. Theoretical foundations and practices. Berlin: Springer.

    Google Scholar 

  • Schwarz, B., Neumann, Y., Gil, J., & Ilya, M. (2003). Construction of collective and individual knowledge in argumentative activity. The Journal of the Learning Sciences, 12(2), 219–256.

    Article  Google Scholar 

  • Smith, M. S. (2001). Practice-based professional development for teachers of mathematics. Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Steele, M. (2005). Comparing knowledge bases and reasoning structures in discussions of mathematics and pedagogy. Journal of Mathematics Teacher Education, 8, 291–328.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Walter, J., & Johnson, J. (2007). Elementary teachers’ linguistic inventions and semantic warrants for mathematical inferences. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31 st conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 233–240). Seoul: PME.

    Google Scholar 

  • Walton, D. (2006). Fundamentals of critical argumentation. New York: Cambridge University Press.

    Google Scholar 

  • Walton, D., & Reed, C. (2005). Argumentation schemes and enthymemes. Synthese, 145, 339–370.

    Article  Google Scholar 

  • Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th international conference on the psychology of mathematics education (Vol. 1, pp. 9–23). Utrecht: IGPME.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Metaxas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metaxas, N., Potari, D. & Zachariades, T. Analysis of a teacher’s pedagogical arguments using Toulmin’s model and argumentation schemes. Educ Stud Math 93, 383–397 (2016). https://doi.org/10.1007/s10649-016-9701-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-016-9701-z

Keywords

Navigation