Skip to main content
Log in

Argumentation and algebraic proof

  • Original article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This paper concerns a study analysing cognitive continuities and distances between argumentation supporting a conjecture and its algebraic proof, when solving open problems involving properties of numbers. The aim of this paper is to show that, unlike the geometrical case, the structural distance between argumentation and proof (from an abductive argumentation to a deductive proof) is not one of the possible difficulties met by students in solving such problems. On the contrary, since algebraic proof is characterized by a strong deductive structure, abductive steps in the argumentation activity can be useful in linking the meaning of the letters used in the algebraic proof with numbers used in the argumentation. The analysis of continuities and distances between argumentation and proof is based on the use of Toulmin’s model combined with ck¢ model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This answer was given in a test designed to evaluate algebraic competencies in a class of 13–14 year-olds.

References

  • Anscombre, J. C., & Ducrot, O. (1983). L’argumentation dans la langue. Bruxelles: Mardaga.

    Google Scholar 

  • Arsac, G., Germain, G., & Mante, M. (1991). Problème ouvert et situation-problème. Lyon: IREM.

    Google Scholar 

  • Arzarello, F., Bazzini, L., & Chiappini, G. (2001). A model for analyzing algebraic process of thinking. In R. Sutherland, T. Rojano, & A. Bell (Eds.), Perspectives on School Algebra (pp. 61–82). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Balacheff, N. (1988). Une étude des processus de preuve en mathématiques chez les élèves de Collège. Thèse d’état. Grenoble: Université Joseph Fourier.

  • Balacheff, N., & Gaudin, N. (2002). Students conceptions: an introduction to a formal characterization. Le Cahiers du Laboratoire Leibniz 65.

  • Balacheff, N. (2000). A modelling challenge: untangling learners’ knowing. Journées Internationales d’Orsay sur les Sciences Cognitives: L’apprentissage, JIOSC2000, Paris.

  • Balacheff, N., & Margolinas, C. (2005). Ckc modèle de connaissances pour le calcul des situations didactiques. In A. Mercier, & C. Margolinas (Eds.), Balises pour la didactique des mathématiques (pp. 75–106). Grenoble: La pensée sauvage.

    Google Scholar 

  • Boero, P., Garuti, R., & Mariotti, M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. In Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education PME-XX, vol. 2, (pp. 121–128). Valencia.

  • Cerulli, M., & Mariotti, M. (2003). Building theories: working in a microworld and writing the mathematical notebook. In Proceedings of the 2003 Joint Meeting of PME and PMENA, CRDG, College of Education, University of Hawai’i, Honolulu, vol. 2, (pp. 181–188). HI, USA.

  • Chevallard, Y. (1989). Arithmétique, Algèbre, Modélisation. Aix-Marseille: IREM.

    Google Scholar 

  • Duval, R. (1995). Sémiosis et pensée humaine, Edition: Peter Lang, Suisse.

  • Duval, R. (2002). L’apprentissage de l’algèbre et le problème cognitif de la désignation des objets. Actes des Séminaires SFIDA-13 à SFIDA-16 vol. IV. Nice: IREM.

  • Drohuard, J. P. (1992). Shells, shellettes and free shells, a framework for algebraic skills. Psychology for Mathematics Education PMEXVII, Tsukuba, Japan.

  • Garuti, R., Boero, P., Lemut, E., & Mariotti, M. A. (1996). Challenging the traditional school approach to theorems. In Proceedings of the International Group for the Psychology of Mathematics Education PME-XX, vol. 2 (pp. 113–120). Valencia.

  • Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulties of proof. In Proceedings of the International Group for the Psychology of Mathematics Education PME-XXII, vol. 2, (pp. 345–352). Stellenbosh.

  • Hanna, G., & Jahnke, N. (1993). Proof and application. Educational Studies in Mathematics, 24, 421–438.

    Article  Google Scholar 

  • Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396–428.

    Article  Google Scholar 

  • Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27, 59–78.

    Article  Google Scholar 

  • Lakatos, I. (1976). Proofs and refutations. The logic of Mathematical Discovery. Cambridge: Cambridge University Press (Italian translation Benelli D. (1979). Dimostrazioni e confutazioni La logica della scoperta matematica. Milano: Feltrinelli).

  • Linchevski, L., & Herscovics, N. (1996). Crossing the cognitive gap between arithmetic and algebra operating on the unknown in the context of equations. Educational Studies in Mathematics, 30(1), 78, 39–65.

    Google Scholar 

  • Linchevski, L., & Livneh, D. (1999). Structure sense: The relationship between algebraic and numerical contexts. Educational Studies in Mathematics, 40, 173–196.

    Article  Google Scholar 

  • Mariotti, M. A., Bartolini Bussi, M. G., Boero, P., Ferri, F., & Garuti, M. R. (1997). Approaching Geometry theorems in contexts: from history and epistemology to cognition. In Proceedings of the International Group for the Psychology of Mathematics Education PME 21, vol. 1 (pp. 180–195). Lahti, Finland.

  • Mariotti, M. A. (2001). La preuve en mathématique. La Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies, pp. 437–458.

  • Miyakawa, T. (2002). Relation between proof and conception: the case of proof for the sum of two even numbers. In Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education PME-26, (pp. 21–26). Norwich.

  • Pedemonte, B. (2002). Etude didactique et cognitive des rapports de l’argumentation et de la démonstration en mathématiques. Thèse de Doctorat. Grenoble I: Université Joseph Fourier.

  • Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration. Recherche en didactique des mathématiques, 25(3), 313–348.

    Google Scholar 

  • Pedemonte, B. (2007a). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23–41.

    Article  Google Scholar 

  • Pedemonte, B. (2007b). Structural relationships between argumentation and proof in solving open problems in algebra. In Proceedings of the V Congress of the European Society for Research in Mathematics Education CERME 5, (pp. 643–652). Larnaca, Cyprus.

  • Pedemonte, B., Chiappini, G. (2008) Algebra on Numerical sets: a system for teaching and learning algebra. International Journal Continuing Engineering Education and Life-Long Learning (in press).

  • Peirce, C. S. (1960). Collected Papers. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca, L. (1958). Traité de l’argumentation-La nouvelle rhétorique Editions de l’Université de Bruxelles, Bruxelles 1992 (5éme édition).

  • Plantin, C. (1990). Essais sur l’argumentation. Paris: Kimé.

    Google Scholar 

  • Polya, G. (1962). How to solve it? New York: Princeton University Press (French translation Mesnage C. Comment poser et résoudre un problème. Paris: Dunod).

  • Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.

    Article  Google Scholar 

  • Toulmin S. E. (1993). The use of arguments. Cambridge: Cambridge University Press (French translation De Brabanter P. (1958). Les usages de l’argumentation, Presse Universitaire de France).

  • Yerushalmy M., & Chazan, D. (2002). Flux in school algebra: curricular change, graphing technology, research on student learning and teacher knowledge. In L. English (Ed.) Handbook of International Research in Mathematics Education (pp. 725–755). Hillsdale, NJ: Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Pedemonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedemonte, B. Argumentation and algebraic proof. ZDM Mathematics Education 40, 385–400 (2008). https://doi.org/10.1007/s11858-008-0085-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-008-0085-0

Keywords

Navigation