Skip to main content
Log in

Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In the following study, extremely low frequency electromagnetic fields (EL-EMF) radiation was used to restore sensitivity in the cisplatin-resistant A2780 ovarian cancer cells. For this purpose A2780 cells were treated with different doses of cisplatin and EL-EMF (50 Hz, 200 gauss, and 2 h) alone. Cytotoxicity was the measurement using MTT assay. After calculating IC50 for cisplatin (90 µg/ml) a lower concentration from IC50 (30 and 60 µg/ml) was used to be combined with EL-EMF. We compare the effects of each cisplatin, EL-EMF and combination groups using acridine orange–propidium iodide (AO/PI) and DAPI staining, caspase 3/9 activation assay and Annexin/PI assay. We also assessed changes in P53 and Matrix metalloproteinases 2 (MMPs) gene expression with semi-quantitative RT-PCR. Results indicated an EL-EMF-dependent proliferative decrease which was found <10 %, and occurred independently of cisplatin. The decreased proliferation rate for 30 and 60 µg/ml cisplatin was about 20 and 40 %, respectively, while for synergistic groups 30 and 60 µg/ml cisplatin with 2 h EL-EMF exposer, showed 47 and 71 % decrease in viability in rats. DAPI staining indicated that chromatin break down significantly increased in synergistic groups. Acridine orange staining also confirmed MTT assay results. Caspase activity significantly increased in the combined groups. Semi-quantitative RT-PCR showed that in synergistic groups of cisplatin and EL-EMF, expression of P53 was increased but the expression level of MPP-2 gene decreased. Results from this study showed that changes generated by the non-invasive EL-EMF can make resistant cells sensitive to cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akdag MZ, Dasdag S, Ulukaya E, Uzunlar AK, Kurt MA, Taşkin A (2010) Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain. Biol Trace Elem Res 138:238–249. doi:10.1007/s12011-010-8615-3

    Article  CAS  Google Scholar 

  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123:437–448. doi:10.1016/j.cell.2005.08.011

    Article  CAS  Google Scholar 

  • Consales C, Merla C, Marino C, Benassi B (2012) Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012:16. doi:10.1155/2012/683897

    Article  Google Scholar 

  • Costa F, Oliveira A, Meirelles R, Machado M, Zanesco T, Surjan R (2001) Treatment of advanced hepatocellular carcinoma with very low levels of amplitude-modulated electromagnetic fields. Br J Cancer 1005:640–648

    Google Scholar 

  • Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O (2012) Molecular mechanisms of cisplatin resistance. Oncogene 2012:1869–1883

    Article  Google Scholar 

  • Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62:104–109

    Article  CAS  Google Scholar 

  • Jiménez-García MN, Arellanes-Robledo J, Aparicio-Bautista DI, Rodríguez-Segura MA, Villa-Treviño S, Godina-Nava JJ (2010) Anti-proliferative effect of extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver. BMC Cancer 10:159. doi:10.1186/1471-2407-10-159

    Article  Google Scholar 

  • Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584. doi:10.1038/nrc2167

    Article  CAS  Google Scholar 

  • Lai C, Singh N (2010) Medical Applications of Electromagnetic Fields. IOP Conf Series Earth Environ Sci 10:012006

    Article  Google Scholar 

  • Lakhani SA, Masud A, Keisuke J, George A, Booth P, Wajahat ZM, Irteza I, Al Richard (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Carmen J 311:847–851

    CAS  Google Scholar 

  • Mazzeo F, Berlière M, Kerger J, Squifflet J, Duck L, D’Hondt V, Yves H, Jacques D, Machiels J-P (2003) Neoadjuvant chemotherapy followed by surgery and adjuvant chemotherapy in patients with primarily unresectable, advanced-stage ovarian cancer. Gynecol Oncol 90:163–169. doi:10.1016/S0090-8258(03)00249-X

    Article  CAS  Google Scholar 

  • Mihai C, Rotinberg P, Brinza F, Vochita G (2014) Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells. J Environ Health Sci Eng 12:1

    Article  Google Scholar 

  • Misra S, Ghatak S, Vyas A, O’Brien P, Markwald RR, Khetmalas M, Vincent CH, James BM, Nikos KK, Markku IT, Raija HT, Glenn DP, Padhye S (2014) Isothiocyanate analogs targeting CD44 receptor as an effective strategy against colon cancer. Med Chem Res 23:3836–3851. doi:10.1007/s00044-014-0958-4

    Article  CAS  Google Scholar 

  • Patruno A, Pesce M, Marrone A, Speranza L, Grilli A, Lutiis M (2012) Activity of matrix metallo proteinases (MMPs) and the tissue inhibitor of MMP (TIMP)-1 in electromagnetic field-exposed THP-1 cells. J Cell Physiol 227:2767–2774

    Article  CAS  Google Scholar 

  • Pesce M, Patruno A, Speranza L, Reale M (2013) Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators. Eur Cytokine Netw 24:1–10

    CAS  Google Scholar 

  • Pirozzoli MC, Marino C, Lovisolo GA, Laconi C, Mosiello L, Negroni A (2003) Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics 24:510–516. doi:10.1002/bem.10130

    Article  CAS  Google Scholar 

  • Roomi M, Monterrey J, Kalinovsky T, Rath M, Niedzwiecki A (2010) In vitro modulation of MMP-2 and MMP-9 in human cervical and ovarian cancer cell lines by cytokines, inducers and inhibitors. Oncol Rep 23:605–614

    CAS  Google Scholar 

  • Ross CL, Harrison BS (2015) Review An introduction to electromagnetic field therapy and immune function : a brief history and current status. J Sci Appl: Biomed 3:18–29

    Google Scholar 

  • Siddik Z (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  CAS  Google Scholar 

  • Simko M, Mattsson M (2004) Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem 93:83–92

    Article  CAS  Google Scholar 

  • Speidel D (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20:14–24. doi:10.1016/j.tcb.2009.10.002

    Article  CAS  Google Scholar 

  • Steinbeck MJ, Chernets N, Zhang J, Kurpad DS, Fridman G, Fridman A, Freeman T (2013) Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment. PLoS ONE 8:e82143. doi:10.1371/journal.pone.0082143

    Article  Google Scholar 

  • Sudhakar A (2009) History of cancer, ancient and modern treatment methods. J Cancer Sci Ther 1:1–4

    Article  Google Scholar 

  • Thomas H, Coley H (2003) Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 10:156–165

    Google Scholar 

  • Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454

    Article  Google Scholar 

  • Vanden Berghe T, Grootjans S, Goossens V, Dondelinger Y, Krysko DV, Takahashi N, Vandenabeele P (2013) Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods (San Diego, Calif.) 61:117–129. doi:10.1016/j.ymeth.2013.02.011

    Article  CAS  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek E, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665. doi:10.1038/nature05541

    Article  CAS  Google Scholar 

  • Zhou SA, Uesaka M (2006) Bioelectrodynamics in living organisms. Int J Eng Sci 44:67–92. doi:10.1016/j.ijengsci.2005.11.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Research center for Animal Development Applied biology, Islamic Azad University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Baharara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baharara, J., Hosseini, N. & Farzin, T.R. Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation. Cytotechnology 68, 1403–1413 (2016). https://doi.org/10.1007/s10616-015-9900-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9900-y

Keywords

Navigation