Skip to main content

Advertisement

Log in

Effects of Extremely Low-Frequency Magnetic Field on Caspase Activities and Oxidative Stress Values in Rat Brain

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study was aimed to investigate the effect of extremely low-frequency magnetic field (ELF-MF) on apoptosis and oxidative stress values in the brain of rat. Rats were exposed to 100 and 500 µT ELF-MF, which are the safety standards of public and occupational exposure for 2 h/day for 10 months. Brain tissues were immunohistochemically stained for the active (cleaved) caspase-3 in order to measure the apoptotic index by a semi-quantitative scoring system. In addition, the levels of catalase (CAT), malondialdehyde (MDA), myeloperoxidase (MPO), total antioxidative capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) were measured in rat brain. Final score of apoptosis and MPO activity were not significantly different between the groups. CAT activity decreased in both exposure groups (p < 0.05), while TAC was found to be lower in ELF 500 group than those in ELF-100 and sham groups (p < 0.05). MDA, TOS, and OSI values were found to be higher in ELF-500 group than those in ELF-100 and sham groups (p < 0.05). In conclusion, apoptosis was not changed by long-term ELF-MF exposure, while both 100 and 500 µT ELF-MF exposure induced toxic effect in the rat brain by increasing oxidative stress and diminishing antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ELF-MF:

Extremely low-frequency magnetic field

CAT:

Catalase

MDA:

Malondialdehyde

MPO:

Myeloperoxidase

TAC:

Total antioxidative capacity

TOS:

Total oxidant status

OSI:

Oxidative stress index

ROS:

Reactive oxygen substances

LPO:

Lipid peroxidation

TBA:

Thiobarbituric acid

ICNIRP:

International Commission on Non Ionizing Radiation Protection

References

  1. Akdag MZ, Dasdag S, Aksen F, Isik B, Yilmaz F (2006) Effect of ELF magnetic fields on lipid peroxidation, sperm count, p53, and trace elements. Med Sci Monit 12:BR366–BR371

    PubMed  Google Scholar 

  2. Falone S, Grossi MR, Cinque B, D’Angelo B, Tettamanti E, Cimini A, DiIlio C, Amicarelli F (2007) Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol 39:2093–2106

    Article  CAS  PubMed  Google Scholar 

  3. Mnaimneh S, Bizri M, Veyret B (1996) No effect of exposure to static and sinusoidal magnetic fields on nitric oxide production by macrophages. Bioelectromagnetics 17:519–521

    Article  CAS  PubMed  Google Scholar 

  4. Repacholi MH, Greenebaum B (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20:133–160

    Article  CAS  PubMed  Google Scholar 

  5. Akdag MZ, Bilgin MH, Dasdag S, Tumer C (2007) Alteration of nitric oxide production in rats exposed to a prolonged, extremely low-frequency magnetic field. Electromagn Biol Med 26:99–106

    Article  CAS  PubMed  Google Scholar 

  6. Jajte J, Grzegorczyk J, Zmyslony M, Rajkowska A (2002) Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes. Bioelectrochemistry 57:107–111

    Article  CAS  PubMed  Google Scholar 

  7. Nazıroglu M (2007) Molecular mechanisms of vitamin E on intracellular signaling pathways in brain. In: Goth L (ed) Reactive oxygen species and diseases. Research Signpost, Kerala, pp 239–256

    Google Scholar 

  8. Nazıroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP ribose. Neurochem Res 32:1990–2001

    Article  PubMed  Google Scholar 

  9. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  10. Nazıroglu M, Uğuz AC, Gokcimen A, Bulbul M, Karatopuk DU, Turker Y, Cerci C (2008) Tenoxicam modulates antioxidant redox system and lipid peroxidation in rat brain. Neurochem Res 33:1832–1837

    Article  PubMed  Google Scholar 

  11. Ozmen I, Nazıroglu M, Alicı HA, Sahin F, Cengiz M, Eren I (2007) Spinal morphine administration reduces the fatty acid contents in spinal cord and brain in rabbits due to oxidative stress. Neurochem Res 32:19–25

    Article  PubMed  Google Scholar 

  12. Kayan M, Nazıroglu M, Barak C (2009) Effects of vitamins C and E combination on element levels in blood of smoker and nonsmoker radiology X-ray technicians. Biol Trace Elem Res. doi:10.1007/s12011-009-8528-1

    Google Scholar 

  13. Harakawa S, Inoue N, Hori T, Tochio K, Kariya T, Takahashi K, Doge F, Suzuki H, Nagasawa H (2005) Effects of a 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats. Bioelectromagnetics 26:589–594

    Article  CAS  PubMed  Google Scholar 

  14. Tian F, Nakahara T, Yashida M, Honda N, Hirose H, Miyakoshi J (2002) Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient Xrs5 cells. Biochem Biophys Res Commun 292:355–361

    Article  CAS  PubMed  Google Scholar 

  15. Hadjiloucas I, Gilmore AP, Bundred NJ, Streuli CH (2001) Assessment of apoptosis in human breast tissue using an antibody against the active form of caspase 3: relation to tumour histopathological characteristics. Br J Cancer 85:1522–1526

    Article  CAS  PubMed  Google Scholar 

  16. Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Yegin D (2008) Mobile phone exposure does not induce apoptosis on spermatogenesis in rats. Arch Med Res 39:40–44

    Article  CAS  PubMed  Google Scholar 

  17. Blumenthal WC, Ricci J, Breger L et al (1997) Effects of low-intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Bioelectromagnetics 18:264–272

    Article  CAS  PubMed  Google Scholar 

  18. Gomez MJR, De la Pena L, Pastor JM, Morillo MM, Gil L (2000) 25 Hz electromagnetic field exposure has no effect on cell cycle distribution and apoptosis in U-937 and HCA-2/1cch cells. Bioelectrochemistry 53:137–140

    Article  Google Scholar 

  19. Xu G, Zhang W, Bertram P, Zheng XF, McLeod H (2004) Pharmacogenomic profiling of the PI3K/PTEN-AKT-mTOR pathway in common human tumors. Int J Oncology 24:893–900

    CAS  Google Scholar 

  20. Lowry OH, Rosebrough NL, Farr AL, Randall RF (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  21. Wei H, Frenkel K (1993) Relationship of oxidative events and DNA oxidation in SENCAR mice to in vivo promoting activity of phorbol ester-type tumor promoters. Carcinogenesis 14:1195–1201

    Article  CAS  PubMed  Google Scholar 

  22. Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37:112–119

    Article  CAS  PubMed  Google Scholar 

  23. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  PubMed  Google Scholar 

  24. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  PubMed  Google Scholar 

  25. Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–152

    Article  CAS  PubMed  Google Scholar 

  26. Conti M, Morand PC, Levillain P, Lemonnier A (1991) Improved fluorimetric determination of malondialdehyde. Clin Chem 37:1273–1275

    CAS  PubMed  Google Scholar 

  27. Santini MT, Ferrante A, Ranialdi G, Indovina P, Indovina PL (2005) Extremely low frequency (ELF) magnetic fields and apoptosis: a review. Int J Radiat Biol 81:1–11

    Article  CAS  PubMed  Google Scholar 

  28. Higgins GC, Beart PM, Nagley P (2009) Oxidative stress triggers neuronal caspase-independent death: endonuclease G involvement in programmed cell death-type III. Cell Mol Life Sci 66:2773–2787

    Article  CAS  PubMed  Google Scholar 

  29. Cheng WT, Guo ZX, Lin CA, Lin MY, Tung LC, Fang K (2009) Oxidative stress promotes autophagic cell death in human neuroblastoma cells with ectopic transfer of mitochondrial PPP2R2B (Bbeta2). BMC Cell Biol 10(1):91 [Epub ahead of print]

    Article  PubMed  Google Scholar 

  30. Kula B, Sobczak A, Kuska R (2002) A study of the effects of static and extremely low frequency magnetic fields on lipid peroxidation products in subcellular fibroblast fractions. Electromagn Biol Med 21:161–168

    Article  Google Scholar 

  31. Kula B, Sobczak A, Kuska R (2000) Effects of static and ELF magnetic fields on free-radical processes in rat liver and kidney. Electro-Magnetobiol 19:99–105

    CAS  Google Scholar 

  32. Canseven AG, Coskun S, Seyhan N (2008) Effects of various extremely low frequency magnetic fields on the free radical processes, natural antioxidant system, and respiratory burst system activities in the heart and liver tissues. Indian J Biochem Biophys 45:326–331

    CAS  PubMed  Google Scholar 

  33. Amara S, Abdelmelek H, Garrel C, Guiraud P, Douki T, Ravanat JL, Favier A, Sakly M, Rhouma KB (2007) Zinc supplementation ameliorates static magnetic field-induced oxidative stress in rat tissues. Environ Toxicol Pharmacol 23:193–197

    Article  CAS  Google Scholar 

  34. Yokus B, Cakir DU, Akdag MZ, Sert C, Mete N (2005) Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields. Free Radic Res 39:317–323

    Article  CAS  PubMed  Google Scholar 

  35. Gumral N, Naziroglu M, Koyu A, Ongel K, Celik O, Saygin M, Kahriman M, Caliskan S, Kayan M, Gencel O, Flores-Arce MF (2009) Effects of selenium and l-carnitine on oxidative stress in blood of rat induced by 2.45-GHz radiation from wireless devices. Biol Trace Elem Res 132:153–163

    Article  CAS  Google Scholar 

  36. Akdag MZ, Dasdag S, Ketani MA, Sagsoz H (2009) Effect of extremely low frequency magnetic fields in safety standards on structure of acidophilic and basophilic cells in anterior pituitary gland of rats: an experimental study. Journal of International Dental and Medical Research 2:61–66

    Google Scholar 

  37. International Commission on Non Ionizing Radiation Protection (ICNIRP) (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys 74:494–522

    Google Scholar 

  38. Sharifian A, Gharavi M, Pasalar P, Aminian O (2009) Effect of extremely low frequency magnetic field on antioxidant activity in plasma and red blood cells in spot welders. Int Arch Occup Environ Health 82:259–266

    Article  PubMed  Google Scholar 

  39. Juutilainen J, Kumlin T, Naarala J (2006) Do extremely low frequency magnetic fields enhance the effects of environmental carcinogens? A meta-analysis of experimental studies. Int J Radiat Biol 82:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Dasdag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akdag, M.Z., Dasdag, S., Ulukaya, E. et al. Effects of Extremely Low-Frequency Magnetic Field on Caspase Activities and Oxidative Stress Values in Rat Brain. Biol Trace Elem Res 138, 238–249 (2010). https://doi.org/10.1007/s12011-010-8615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8615-3

Keywords

Navigation