Skip to main content
Log in

Approach toward an efficient inoculum preparation stage for suspension BHK-21 cell culture

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Mammalian cells are the most frequently used hosts for biopharmaceutical proteins manufacturing. Inoculum quality is a key element for establishing an efficient bioconversion process. The main objective in inoculation expansion process is to generate large volume of viable cells in the shortest time. The aim of this paper was to optimize the inoculum preparation stage of baby hamster kidney (BHK)-21 cells for suspension cultures in benchtop bioreactors, by means of a combination of static and agitated culture systems. Critical parameters for static (liquid column height: 5, 10, 15 mm) and agitated (working volume: 35, 50, 65 mL, inoculum volume percentage: 10, 30 % and agitation speed: 25, 60 rpm) cultures were study in T-flask and spinner flask, respectively. The optimal liquid column height was 5 mm for static culture. The maximum viable cell concentration in spinner flask cultures was reached with 50 mL working volume and the inoculum volume percentage was not significant in the range under study (10–30 %) at 25 rpm agitation. Agitation speed at 60 rpm did not change the main kinetic parameters with respect to those observed for 25 rpm. These results allowed for a schedule to produce more than 4 × 109 BHK-21 cells from 4 × 106 cells in 13 day with 1,051 mL culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Augusto EFP, Moraes AM, Piccoli RAM, Barral MF, Suazo CAT, Tonso A, Pereira CA (2010) Nomenclature and guideline to express the amount of a membrane protein synthesized in animal cells in view of bioprocess optimization and production monitoring. Biologicals 38:105–112

    Article  CAS  Google Scholar 

  • Auninš JG (2010) Viral vaccine production in cell culture. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–52

    Google Scholar 

  • Bambrick LL, Kostov Y, Rao G (2011) In vitro cell culture pO2 is Significantly different from incubator pO2. Biotechnol Prog 27:1185–1189

    Article  CAS  Google Scholar 

  • Berlec A, Štrukelj B (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 40:257–274. doi:10.1007/s10295-013-1235-0

    Article  CAS  Google Scholar 

  • SAFC Biosciences. http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/p14650.Par.0001.File.tmp/p14650.pdf. Accessed 8 July 2013

  • Cruz HJ, Conradt HS, Dunker R, Peixoto CM, Cunha AE, Thomaz M, Burger C, Dias EM, Clemente J, Moreira JL, Rieke E, Carrondo MJT (2002) Process development of a recombinant antibody/interleukin-2 fusion protein expressed in protein-free medium by BHK cells. J Biotechnol 96:169–183

    Article  CAS  Google Scholar 

  • Fernández Núñez EG, Leme J, de Almeida Parizotto L, Chagas WA, Rezende AG, Costa BLV, Monteiro DCV, Boldorini VLL, Jorge SAC, Astray RM, Pereira CA, Caricati CP, Tonso A (2013) Influence of aeration–homogenization system in stirred tank bioreactors, dissolved oxygen concentration and pH control mode on BHK-21 cell growth and metabolism. Cytotechnology. doi:10.1007/s10616-013-9612-0

    Google Scholar 

  • Freshney RI (2005) Defined media and supplements: Culture of animal cells a manual of basic technique, 5th edn. Wiley-Liss, Hoboken, NJ, USA

    Book  Google Scholar 

  • Freshney RI (2010) Culture of animal cells: a manual of basic technique and specialized applications, 6th edn. Wiley, Hoboken

    Book  Google Scholar 

  • GIBCO Cell Culture protocols. Cryopreservation of Mammalian Cells. http://www.invitrogen.com/site/us/en/home/References/gibco-cell-culture-basics/cell-culture-protocols/cryopreservation-of-mammalian-cells.html. Accessed 8 July 2013

  • Godoy-Silva R, Berdugo C, Chalmers JJ (2010) Aeration, mixing, and hydrodynamics, animal cell bioreactors. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–12

    Google Scholar 

  • Griffiths JB (2010) Mammalian cell culture reactors, scale-up. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–13

    Google Scholar 

  • Griffiths B, Wurm F (2003) Mammalian cell culture. In: Meyers RA (ed) Encyclopedia of physical science and technology, 3rd edn. Elsevier Science Ltd, Amsterdam, pp 31–47

    Chapter  Google Scholar 

  • Handa-Corrigan A, Emery AN, Spier RE (1989) Effect of gas–liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles. Enzyme Microb Tech 11:230–235

    Article  CAS  Google Scholar 

  • Ishaque A, Thrift J, Murphy JE, Konstantinov K (2007) Over-expression of Hsp70 in BHK- 21 Cells engineered to produce recombinant factor VIII promotes resistance to apoptosis and enhances secretion. Biotechnol Bioeng 97:144–155

    Article  CAS  Google Scholar 

  • Junker B (2007) Fermentation. In: Seidel A (ed) Kirk–Othmer encyclopedia of chemical technology, 5th edn. John Wiley & Sons, Inc., Hoboken, pp 1–55

  • Kleman MI, Oellers K, Lullau E (2008) Optimal conditions for freezing CHO-S and HEK293-EBNA cell lines: influence of Me2SO, freeze density, and PEI-mediated transfection on revitalization and growth of cells, and expression of recombinant protein. Biotechnol Bioeng 100:911–922

    Article  CAS  Google Scholar 

  • Kloth C, MacIssac G, Ghebramariam H, Arunakumari A (2008) An inoculum expansion process for fragile recombinant CHO cell lines. Bioprocess Int 6:44–50

    CAS  Google Scholar 

  • Kloth C, Maclsaac G, Ghebremariam H, Arunakumari A (2010) Inoculum expansion methods, recombinant mammalian cell lines. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–12

    Google Scholar 

  • Moreira JL, Alves PM, Feliciano AS, Aunins JG, Carrondo MJT (1995) Serum-free and serum-containing media for growth of suspended BHK aggregates in stirred vessels. Enzyme Microb Tech 17:437–444

    Article  CAS  Google Scholar 

  • Muller P, Aurich H, Wenkel R, Schäffner I, Wolff I, Walldorf J, Fleig WE, Christ B (2004) Serum-free cryopreservation of porcine hepatocytes. Cell Tissue Res 317:45–56

    Article  Google Scholar 

  • Platas-Barradas O, Jandt U, Minh Phan LD, Villanueva ME, Schaletzky M, Rath A, Freund S, Reichl U, Skerhutt E, Scholz S, Noll T, Sandig V, Pörtner R, Zeng A-P (2012) Evaluation of criteria for bioreactor comparison and operation standardization for mammalian cell culture. Eng Life Sci 12:518–528

    Article  CAS  Google Scholar 

  • Radlett PJ, Telling RC, Stone J, Whiteside JP (1971) Improvements in the growth of BHK-21 cells in submerged culture. Appl Microbiol 22:534–537

    CAS  Google Scholar 

  • Seth G (2012) Freezing mammalian cells for production of biopharmaceuticals. Methods 56:424–431. doi:10.1016/j.ymeth.2011.12.008

    Article  CAS  Google Scholar 

  • Seth G, Hamilton RW, Stapp TR, Zheng L, Meier A, Petty K, Leung S, Chary S (2012) Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns. Biotechnol Bioeng 110:1376–1385. doi:10.1002/bit.24808

    Article  Google Scholar 

  • Sidoli FR, Mantalaris A, Asprey SP (2004) Modelling of Mammalian cells and cell culture processes. Cytotechnology 44:27–46

    Article  CAS  Google Scholar 

  • Sood S, Singhal R, Bhat S, Kumar A (2011) Inoculum preparation. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Elsevier, Spain, pp 151–164

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for post-doctoral fellowship (2010/52521-6), Fundação para o Desenvolvimento Tecnológico da Engenharia (FDTE) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 483009/2010-5) for scientific grants. First author gratefully acknowledges his wife and daughter, Relma and Giovanna for the inspiration to write this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eutimio Gustavo Fernández Núñez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández Núñez, E.G., Leme, J., de Almeida Parizotto, L. et al. Approach toward an efficient inoculum preparation stage for suspension BHK-21 cell culture. Cytotechnology 68, 95–104 (2016). https://doi.org/10.1007/s10616-014-9756-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9756-6

Keywords

Navigation