Skip to main content

Advertisement

Log in

A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The focus of both clinical and basic studies on stem cells is increasing due to their potentials in regenerative medicine and cell-based therapies. Recently stem cells have been genetically modified to enhance an existing character in or to bring a new property to them. However, accomplishment of declared goals requires detailed knowledge about their molecular characteristics which could be achieved by genetic modifications mostly through nonviral transfection strategies. Capable of differentiating into multiple cells, human unrestricted somatic stem cells (hUSSCs) and human mesenchymal stem cells (hMSCs) seem to be suitable candidates for transfection approaches. Involvement of microRNAs (miRNAs) in many biological processes makes their transfection evaluation valuable. Herein we investigated the efficacy and toxicity of four typically used transfection reagents (Arrest-In, Lipofectamine 2000, Oligofectamine and HiPerfect) systematically to deliver fluorescent labeled-miRNA and Green Fluorescent Protein (GFP) expressing plasmid into hUSSCs and hMSCs. The authenticity of stem cells was verified by differentiation experiments along with flow cytometry of surface markers. Our study revealed that stemness properties of these stem cells were not affected by transient transfection. Moreover the ratios of cell viability and transfection efficiency in both analyzed stem cells were reversed. Considering cell viability, the highest fraction of GFP-expressing cells was obtained using Oligofectamine (~50%) while the highest transfection rate of miRNA was achieved by Lipofectamine 2000 (~90%). Moreover dependency of hMSCs to size of transfected nucleic acid and time-dependency of Oligofectamine and their affection on the yield of transfection were observed. Cytotoxicity assessments also showed that hUSSCs are sensitive to HiPerFect. In addition cells treated by Lipofectamine showed morphological changes. Representing the efficient nucleic acid transfection, our research facilitates comprehensive genetic modification of stem cells and demonstrates powerful approaches to understand stem cell molecular regulation mechanisms, which eventually improves nonviral cell-mediated gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822. doi:10.1182/blood-2004-04-1559

    Article  CAS  Google Scholar 

  • Akimov IA, Kabilova TO, Vlassov VV, Chernolovskaya EL (2009) Inhibition of human cancer-cell proliferation by long double-stranded RNAs. Oligonucleotides 19:31–40. doi:10.1089/oli.2008.0151

    Article  CAS  Google Scholar 

  • Andre F, Mir LM (2004) DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther 11(Suppl 1):S33–S42. doi:10.1038/sj.gt.3302367

    Google Scholar 

  • Bakhshandeh B, Soleimani M, Ghaemi N, Shabani I (2011) Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta Pharmacol Sin 32:626–636. doi:10.1038/aps.2011.8

    Article  CAS  Google Scholar 

  • Barrilleaux B, Phinney DG, Prockop DJ, O’Connor KC (2006) Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12:3007–3019. doi:10.1089/ten.2006.12.3007

    Article  CAS  Google Scholar 

  • Brandner S (2010) Nanog, Gli, and p53: a new network of stemness in development and cancer. EMBO J 29:2475–2476. doi:10.1038/emboj.2010.162

    Article  CAS  Google Scholar 

  • Chitwood DH, Timmermans MC (2010) Small RNAs are on the move. Nature 467:415–419. doi:10.1038/nature09351

    Article  CAS  Google Scholar 

  • Coutant F, Frenkiel MP, Despres P, Charneau P (2008) Protective antiviral immunity conferred by a nonintegrative lentiviral vector-based vaccine. PLoS One 3:e3973. doi:10.1371/journal.pone.0003973

    Article  Google Scholar 

  • Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340. doi:10.1038/nrg2968

    Article  CAS  Google Scholar 

  • Dincer S, Turk M, Piskin E (2005) Intelligent polymers as nonviral vectors. Gene Ther 12(Suppl 1):S139–S145. doi:10.1038/sj.gt.3302628

    Google Scholar 

  • Dinser R, Kreppel F, Zaucke F, Blank C, Paulsson M, Kochanek S, Maurer P (2001) Comparison of longterm transgene expression after non-viral and adenoviral gene transfer into primary articular chondrocytes. Histochem Cell Biol 116:69–77

    CAS  Google Scholar 

  • Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553. doi:10.1126/science.1191138

    Article  CAS  Google Scholar 

  • Falk A, Holmstrom N, Carlen M, Cassidy R, Lundberg C, Frisen J (2002) Gene delivery to adult neural stem cells. Exp Cell Res 279:34–39

    Article  CAS  Google Scholar 

  • Feng Y, Sun Y, Jia W, Zhang C (2010) Platelet-rich plasma and 1, 25(OH)2 vitamin D3 synergistically stimulate osteogenic differentiation of adult human mesenchymal stem cells. Biotechnol Lett 32:635–642. doi:10.1007/s10529-009-0198-8

    Article  CAS  Google Scholar 

  • Ferguson C, Larochelle A, Dunbar CE (2005) Hematopoietic stem cell gene therapy: dead or alive? Trends Biotechnol 23:589–597. doi:10.1016/j.tibtech.2005.09.005

    Article  CAS  Google Scholar 

  • Gheisari Y, Soleimani M, Azadmanesh K, Zeinali S (2008) Multipotent mesenchymal stromal cells: optimization and comparison of five cationic polymer-based gene delivery methods. Cytotherapy 10:815–823. doi:10.1080/14653240802474307

    Article  CAS  Google Scholar 

  • Gonzalez G, Pfannes L, Brazas R, Striker R (2007) Selection of an optimal RNA transfection reagent and comparison to electroporation for the delivery of viral RNA. J Virol Methods 145:14–21. doi:10.1016/j.jviromet.2007.04.013

    Article  CAS  Google Scholar 

  • Hoelters J, Ciccarella M, Drechsel M, Geissler C, Gulkan H, Bocker W, Schieker M, Jochum M, Neth P (2005) Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. J Gene Med 7:718–728. doi:10.1002/jgm.731

    Article  CAS  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301. doi:10.1634/stemcells.2005-0342

    Article  CAS  Google Scholar 

  • Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Muller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135. doi:10.1084/jem.20040440

    Article  Google Scholar 

  • Kongkaneramit L, Sarisuta N, Azad N, Lu Y, Iyer AK, Wang L, Rojanasakul Y (2008) Dependence of reactive oxygen species and FLICE inhibitory protein on lipofectamine-induced apoptosis in human lung epithelial cells. J Pharmacol Exp Ther 325:969–977. doi:10.1124/jpet.107.136077

    Article  CAS  Google Scholar 

  • Lakshmipathy U, Pelacho B, Sudo K, Linehan JL, Coucouvanis E, Kaufman DS, Verfaillie CM (2004) Efficient transfection of embryonic and adult stem cells. Stem Cells 22:531–543. doi:10.1634/stemcells.22-4-531

    Article  Google Scholar 

  • Lam AP, Dean DA (2010) Progress and prospects: nuclear import of nonviral vectors. Gene Ther 7:439–447. doi:10.1038/gt.2010.31

    Article  Google Scholar 

  • Lee M, Kim SW (2005) Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res 22:1–10

    Article  CAS  Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377. doi:10.1002/jcp.21423

    Article  CAS  Google Scholar 

  • Liu YP, Hu YD, Wang F, Ling Y, Kong YZ, Li P (2009) Effect of human telomerase reverse transcriptase gene antisense oligonucleotide on sensitivity of gemcitabine in pancreatic cancer cell. Zhonghua Yi Xue Za Zhi 89:2391–2394

    CAS  Google Scholar 

  • Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37. doi:10.1038/71889

    Article  CAS  Google Scholar 

  • Madeira C, Mendes RD, Ribeiro SC, Boura JS, Aires-Barros MR, da Silva CL, Cabral JM (2010) Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy. J Biomed Biotechnol 2010:735-349. doi:10.1155/2010/735349

    Article  CAS  Google Scholar 

  • Matsuoka J, Yashiro M, Sakurai K, Kubo N, Tanaka H, Muguruma K, Sawada T, Ohira M, Hirakawa K (2010) Role of the stemness factors Sox2, Oct3/4, and Nanog in gastric carcinoma. J Surg Res. doi:10.1016/j.jss.2010.11.903

  • Maurer N, Fenske DB, Cullis PR (2001) Developments in liposomal drug delivery systems. Expert Opin Biol Ther 1:923–947. doi:10.1517/14712598.1.6.923

    Article  CAS  Google Scholar 

  • Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341–355. doi:10.1038/nrg2988

    Article  CAS  Google Scholar 

  • Nabzdyk CS, Chun M, Pradhan L, Logerfo FW (2011) High throughput RNAi assay optimization using adherent cell cytometry. J Transl Med 9:48. doi:10.1186/1479-5876-9-48

    Article  CAS  Google Scholar 

  • Naldini L (2011) Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12:301–315. doi:10.1038/nrg2985

    Article  CAS  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953. doi:10.1126/science.1164270

    Article  CAS  Google Scholar 

  • Oliveira DM, Goodell MA (2003) Transient RNA interference in hematopoietic progenitors with functional consequences. Genesis 36:203–208. doi:10.1002/gene.10212

    Article  CAS  Google Scholar 

  • Papamichos SI, Kotoula V, Tarlatzis BC, Agorastos T, Papazisis K, Lambropoulos AF (2009) OCT4B1 isoform: the novel OCT4 alternative spliced variant as a putative marker of stemness. Mol Hum Reprod 15:269–270. doi:10.1093/molehr/gap018

    Article  CAS  Google Scholar 

  • Peister A, Mellad JA, Wang M, Tucker HA, Prockop DJ (2004) Stable transfection of MSCs by electroporation. Gene Ther 11:224–228. doi:10.1038/sj.gt.3302163

    Article  CAS  Google Scholar 

  • Poliseno L, Pitto L, Simili M, Mariani L, Riccardi L, Ciucci A, Rizzo M, Evangelista M, Mercatanti A, Pandolfi PP, Rainaldi G (2008) The proto-oncogene LRF is under post-transcriptional control of MiR-20a: implications for senescence. PLoS One 3:e2542. doi:10.1371/journal.pone.0002542

    Article  Google Scholar 

  • Pouton CW, Seymour LW (2001) Key issues in non-viral gene delivery. Adv Drug Deliv Rev 46:187–203

    Article  CAS  Google Scholar 

  • Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF (2005) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 5:1571–1584. doi:10.1517/14712598.5.12.1571

    Article  CAS  Google Scholar 

  • Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461. doi:10.1038/nprot.2006.238

    Article  CAS  Google Scholar 

  • Shafiee A, Kabiri M, Ahmadbeigi N, Yazdani SO, Mojtahed M, Amanpour S, Soleimani M (2011) Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem Cells Dev 20:2077–2091. doi:10.1089/scd.2010.0420

    Article  CAS  Google Scholar 

  • Shao L, Wu WS (2010) Gene-delivery systems for iPS cell generation. Expert Opin Biol Ther 10:231–242. doi:10.1517/14712590903455989

    Article  CAS  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949. doi:10.1126/science.1162494

    Article  CAS  Google Scholar 

  • Tarantino C, Paolella G, Cozzuto L, Minopoli G, Pastore L, Parisi S, Russo T (2010) miRNA 34a, 100, and 137 modulate differentiation of mouse embryonic stem cells. Faseb J 24:3255–3263. doi:10.1096/fj.09-152207

    Article  CAS  Google Scholar 

  • Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Schira J, Muller HW, Wernet P (2011) MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 6:e16138. doi:10.1371/journal.pone.0016138

    Article  CAS  Google Scholar 

  • Van Damme A, Vanden Driessche T, Collen D, Chuah MK (2002) Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther 2:195–209

    Article  Google Scholar 

  • Walia B, Satija N, Tripathi RP, Gangenahalli GU (2011) Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev. doi:10.1007/s12015-011-9279-x

  • Weissig V, Torchilin VP (2001) Cationic bolasomes with delocalized charge centers as mitochondriaspecific DNA delivery systems. Adv Drug Deliv Rev 49:127–149

    Article  CAS  Google Scholar 

  • Weissinger F, Reimer P, Waessa T, Buchhofer S, Schertlin T, Kunzmann V, Wilhelm M (2003) Gene transfer in purified human hematopoietic peripheral-blood stem cells by means of electroporation without prestimulation. J Lab Clin Med 141:138–149. doi:10.1067/mlc.2003.14

    Article  CAS  Google Scholar 

  • Wolff JA, Budker V (2005) The mechanism of naked DNA uptake and expression. Adv Genet 54:3–20. doi:10.1016/S0065-2660(05)54001-X

    CAS  Google Scholar 

  • Wright JF (2009) Transient transfection methods for clinical adeno-associated viral vector production. Hum Gene Ther 20:698–706. doi:10.1089/hum.2009.064

    Article  CAS  Google Scholar 

  • Yamano S, Dai J, Moursi AM (2010) Comparison of transfection efficiency of nonviral gene transfer reagents. Mol Biotechnol 46:287–300. doi:10.1007/s12033-010-9302-5

    Article  CAS  Google Scholar 

  • Yamauchi J, Hayashi Y, Kajimoto K, Akita H, Harashima H (2010) Comparison between a multifunctional envelope-type nano device and lipoplex for delivery to the liver. Biol Pharm Bull 33:926–929

    Article  CAS  Google Scholar 

  • Zhang M, Bai CX, Zhang X, Chen J, Mao L, Gao L (2004) Downregulation enhanced green fluorescence protein gene expression by RNA interference in mammalian cells. RNA Biol 1:74–77

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Stem Cell Technology Research Center. We appreciate Mr. Seyed Zarvan Shahrzad for his contribution in English writing.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhshandeh, B., Soleimani, M., Hafizi, M. et al. A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 64, 523–540 (2012). https://doi.org/10.1007/s10616-012-9430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9430-9

Keywords

Navigation