Skip to main content
Log in

Convergence rate for a Radau hp collocation method applied to constrained optimal control

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

A Correction to this article was published on 16 May 2019

This article has been updated

Abstract

For control problems with control constraints, a local convergence rate is established for an hp-method based on collocation at the Radau quadrature points in each mesh interval of the discretization. If the continuous problem has a sufficiently smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as either the number of collocation points or the number of mesh intervals increase, the discrete solution convergences to the continuous solution in the sup-norm. The convergence is exponentially fast with respect to the degree of the polynomials on each mesh interval, while the error is bounded by a polynomial in the mesh spacing. An advantage of the hp-scheme over global polynomials is that there is a convergence guarantee when the mesh is sufficiently small, while the convergence result for global polynomials requires that a norm of the linearized dynamics is sufficiently small. Numerical examples explore the convergence theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 16 May 2019

    The original version of this article unfortunately contained an error in two equations on page 25, inside the proof of Proposition 6.1.

References

  1. Babuška, I., Suri, M.: The h-p version of the finite element method with quasiuniform meshes, RAIRO. Modélisation Mathématique et Analyse Numérique 21, 199–238 (1987)

    MATH  Google Scholar 

  2. Babuška, I., Suri, M.: The p- and h-p version of the finite element method, an overview. Comput. Methods Appl. Mech. Eng. 80, 5–26 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Suri, M.: The p and h-p version of the finite element method, basic principles and properties. SIAM Rev. 36, 578–632 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control Dyn. 29, 1435–1440 (2006)

    Article  Google Scholar 

  5. Bernardi, C., Maday, Y.: Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43, 53–82 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Betts, J.T.: Sparse optimization suite. In: Applied Mathematical Analysis. LLC, Issaquah (2013)

  7. Biegler, L.T., Zavala, V.M.: Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide optimization. Comput. Chem. Eng. 33, 575–582 (2008)

    Article  Google Scholar 

  8. Bonnans, J.F., Laurent-Varin, J.: Computation of order conditions for symplectic partitioned Runge–Kutta schemes with application to optimal control. Numer. Math. 103, 1–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods, Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  10. Chen, W., Du, W., Hager, W.W., Yang, L.: Bounds for integration matrices that arise in Gauss and Radau collocation. Comput. Optim. Appl. (2019). https://doi.org/10.1007/s10589-019-00099-5

    Google Scholar 

  11. Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rockets 48, 433–445 (2011)

    Article  Google Scholar 

  12. Darby, C.L., Hager, W.W., Rao, A.V.: An hp-adaptive pseudospectral method for solving optimal control problems. Optim. Control Appl. Methods 32, 476–502 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dennis, M.E., Hager, W.W., Rao, A.V.: Computational method for optimal guidance and control using adaptive Gaussian quadrature collocation. J. Guid. Control Dyn. (2019). https://doi.org/10.2514/1.G003943

  14. Dontchev, A., Hager, W.W., Poore, A., Yang, B.: Optimality, stability, and convergence in nonlinear control. Appl. Math. Optim. 31, 297–326 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dontchev, A.L., Hager, W.W.: Lipschitzian stability in nonlinear control and optimization. SIAM J. Control Optim. 31, 569–603 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dontchev, A.L., Hager, W.W.: A new approach to Lipschitz continuity in state constrained optimal control. Syst. Control Lett. 35, 137–143 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comput. 70, 173–203 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge–Kutta approximations in constrained optimal control. SIAM J. Numer. Anal. 38, 202–226 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elnagar, G., Kazemi, M., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Automat. Control 40, 1793–1796 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elnagar, G.N., Kazemi, M.A.: Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11, 195–217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Elschner, J.: The h-p-version of spline approximation methods for Melin convolution equations. J. Integral Equ. Appl. 5, 47–73 (1993)

    Article  MATH  Google Scholar 

  22. Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. J. Guid. Control Dyn. 24, 270–277 (2001)

    Article  Google Scholar 

  23. Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 25, 160–166 (2002)

    Article  Google Scholar 

  24. Garg, D., Patterson, M.A., Darby, C.L., Françolin, C., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Comput. Optim. Appl. 49, 335–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garg, D., Patterson, M.A., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46, 1843–1851 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gong, Q., Ross, I.M., Kang, W., Fahroo, F.: Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. Comput. Optim. Appl. 41, 307–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gui, W., Babuška, I.: The h, p and h-p versions of the finite element method in 1 dimension. Part I. The error analysis of the p-version. Numer. Math. 49, 577–612 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gui, W., Babuška, I.: The h, p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h-and h-p versions. Numer. Math. 49, 613–657 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gui, W., Babuška, I.: The h, p and h-p versions of the finite element method in 1 dimension. Part III. The adaptive h-p version. Numer. Math. 49, 659–683 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hager, W.W.: Multiplier methods for nonlinear optimal control. SIAM J. Numer. Anal. 27, 1061–1080 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hager, W.W.: Runge–Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hager, W.W.: Numerical analysis in optimal control. In: Hoffmann, K.-H., Lasiecka, I., Leugering, G., Sprekels, J., Tröltzsch, F. (eds.) International Series of Numerical Mathematics, vol. 139, pp. 83–93. Birkhauser Verlag, Basel (2001)

    Google Scholar 

  33. Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Radau collocation method applied to unconstrained optimal control (2015). arXiv:1508.03783

  34. Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Gauss collocation method applied to unconstrained optimal control. J. Optim. Theory Appl. 169, 801–824 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hager, W.W., Ianculescu, G.: Dual approximations in optimal control. SIAM J. Control Optim. 22, 423–465 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hager, W.W., Liu, J., Mohapatra, S., Rao, A.V., Wang, X.-S.: Convergence rate for a Gauss collocation method applied to constrained optimal control. SIAM J. Control Optim. 56, 1386–1411 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hager, W.W., Liu, J., Mohapatra, S., Rao, A.V., Wang, X.-S.: A pseudospectral method for optimal control based on collocation at the gauss points. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 2490–2495 (Dec 2018)

  38. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  39. Kang, W.: The rate of convergence for a pseudospectral optimal control method. In: Proceeding of the 47th IEEE Conference on Decision and Control, pp. 521–527. IEEE (2008)

  40. Kang, W.: Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems. J. Control Theory Appl. 8, 391–405 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J. Frankl. Inst. 352, 4081–4106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  43. Patterson, M.A., Hager, W.W., Rao, A.V.: A \(ph\) mesh refinement method for optimal control. Optim. Control Appl. Meth. 36, 398–421 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Patterson, M.A., Rao, A.V.: GPOPS-II: A MATLAB software for solving multi-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse non-linear programming. ACM Trans. Math. Softw. 41, 1–37 (2014)

    Article  MATH  Google Scholar 

  45. Patterson, M.A., Rao, A.V.: \({\mathbb{GPOPS-II}}\), a MATLAB software for solving multiple-phase optimal control problems using \(hp\)-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Trans. Math. Softw. 41, 1–37 (2015)

    Article  MATH  Google Scholar 

  46. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  47. Williams, P.: Jacobi pseudospectral method for solving optimal control problems. J. Guid. Control Dyn. 27, 293–297 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Hager.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: In page 25, under Proposition 6.1, the typo in two equations has been corrected.

October 24, 2017, revised March 25, 2019. The authors gratefully acknowledge support by the Office of Naval Research under Grants N00014-11-1-0068, N00014-15-1-2048 and N00014-18-1-2100, by the National Science Foundation under Grants DMS-1522629, CBET-1404767 and DMS-1819002, and by the U.S. Air Force Research Laboratory under contract FA8651-08-D-0108/0054.

Appendix: Proof of (P1) and (P2)

Appendix: Proof of (P1) and (P2)

We analyze (P1) and (P2) when \(\tau _i\), \(1 \le i \le N\), are either the Radau quadrature points analyzed in this paper, or the Gauss quadrature points studied in [36].

Lemma 10.1

For either the Gauss or Radau quadrature points, the rows of the matrix \([\mathbf{{W}}^{1/2}\mathbf{{D}}_{1:N}]^{-1}\) have Euclidean length bounded by \(\sqrt{2}\). For the Gauss quadrature points, \(\Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty \le 2\), and \(\Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty \) approaches 2 as N tends to infinity, while for the Radau quadrature points, \(\Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty = 2\).

Proof

Given \(\mathbf{{p}} \in \mathbb {R}^N\), let \(p \in \mathcal{{P}}_N\) denote the polynomial that satisfies \(p(-1) = 0\) and \(p(\tau _i) = p_i\), \(1 \le i \le N\). Let \(\dot{\mathbf{{p}}} \in \mathbb {R}^N\) denote the vector with components \(\dot{p}_i = \dot{p}(\tau _i)\), and let \(\ell _j\) be the Lagrange polynomial defined by

$$\begin{aligned} \ell _j(\tau ) = \prod ^{N}_{\begin{array}{c} i=1\\ i\ne j \end{array}} \frac{\tau -\tau _i}{\tau _j-\tau _i}, \quad 1 \le j \le N. \end{aligned}$$

The identity

$$\begin{aligned} \dot{p}(\tau ) = \sum _{j=1}^N \ell _j(\tau ) \dot{p}_j \end{aligned}$$
(10.1)

holds since \(\dot{p} \in \mathcal{{P}}_{N-1}\) and the polynomials on each side of (10.1) are equal at the N quadrature points. Integrate (10.1) to obtain

$$\begin{aligned} p_i = \int _{-1}^{\tau _i} \dot{p}(\tau )\; d\tau = \sum _{j=1}^N \left( \int _{-1}^{\tau _i} \ell _j(\tau ) \; d\tau \right) \dot{p}_j . \end{aligned}$$
(10.2)

Since \(\mathbf{{D}}\) is a differentiation matrix and \(p(-1) = 0\), it follows that \(\mathbf{{D}}_{1:N}\mathbf{{p}} = \dot{\mathbf{{p}}}\). If the vector \(\dot{\mathbf{{p}}} = \mathbf{{0}}\), then the polynomial \(\dot{p} = 0\) since \(\dot{p}\) has degree \(N-1\) and vanishes at N points. Since \(p(-1) = 0\), it follows that polynomial \(p = 0\), which implies that the vector \(\mathbf{{p}} = \mathbf{{0}}\). Hence, \(\mathbf{{D}}_{1:N}\) is invertible, and \(\mathbf{{p}} = \mathbf{{D}}^{-1}\dot{\mathbf{{p}}}\). Comparing the equality \(\mathbf{{p}} = \mathbf{{D}}^{-1}\dot{\mathbf{{p}}}\) to (10.2), we deduce that

$$\begin{aligned} (\mathbf{{D}}^{-1})_{ij} = \int _{-1}^{\tau _i} \ell _j(\tau )\; d\tau . \end{aligned}$$
(10.3)

Choose any \(s \in [-1, 1]\) and define

$$\begin{aligned} d_j(s) = \int _{-1}^s \ell _j(\tau ) \; d\tau \quad \text{ and } \quad R(s) = \sum _{j=1}^N \frac{d_j(s)^2}{\omega _j}. \end{aligned}$$

Observe that \((\mathbf{{D}}^{-1})_{ij} = d_j(\tau _i)\) and \(R(\tau _i)\) is the square of the Euclidean length of row i in \((\mathbf{{W}}^{1/2}\mathbf{{D}})^{-1}\). Let \(q \in \mathcal{{P}}_{N-1}\) be the polynomial defined by

$$\begin{aligned} q(\tau ) = \sum _{j=1}^N \frac{d_j(s) \ell _j(\tau )}{\omega _j}. \end{aligned}$$

Hence, by the triangle and Schwarz inequalities,

$$\begin{aligned} R(s) = \int _{-1}^s q(\tau ) \; d\tau \le \int _{-1}^1 |q(\tau )| \;d \tau \le \sqrt{2} \left( \int _{-1}^1 q(\tau )^2 \; d \tau \right) ^{1/2}. \end{aligned}$$
(10.4)

Since \(q^2 \in \mathcal{{P}}_{2N-2}\), both Radau and Gauss quadrature are exact, and

$$\begin{aligned} \int _{-1}^1 q(\tau )^2 \; d\tau = \sum _{i=1}^N \omega _i q(\tau _i)^2, \end{aligned}$$
(10.5)

where the \(\tau _j\) are either the Radau or Gauss quadrature points and the \(\omega _j\) are the associated weights. Since \(\ell _j(\tau _i) = 1\) for \(i = j\) and \(\ell _j(\tau _i) = 0\) otherwise, it follows from the definition of q that \(q(\tau _i) = d_i(s)/\omega _i\). This substitution in (10.5) yields

$$\begin{aligned} \int _{-1}^1 q(\tau )^2 \; d\tau = \sum _{i=1}^N \frac{ d_i (s)^2}{\omega _j} = R(s) . \end{aligned}$$
(10.6)

Equating the expressions (10.4) and (10.6) implies that

$$\begin{aligned} \left( \int _{-1}^1 q(\tau )^2 \; d \tau \right) ^{1/2} \le \sqrt{2}. \end{aligned}$$

By (10.6), \(R(s) \le 2\) for any \(s \in [-1, 1]\). In particular, \(R(\tau _i) \le 2\) for \(1 \le i \le N\). Since \(R(\tau _i)\) is the square of the Euclidean length of row i in \((\mathbf{{W}}^{1/2}\mathbf{{D}})^{-1}\), the rows of \((\mathbf{{W}}^{1/2}\mathbf{{D}})^{-1}\) have Euclidean length bounded by \(\sqrt{2}\). This result holds for both the Radau and Gauss quadrature points since since \(q^2 \in \mathcal{{P}}_{2N-2}\), and both Radau and Gauss quadrature are exact for polynomials of this degree.

If \(\mathbf{{r}}\) is a row of \(\mathbf{{D}}_{1:N}^{-1}\), then by the Schwarz inequality and the fact that the quadrature weights sum to 2 and the rows of the matrix \([\mathbf{{W}}^{1/2}\mathbf{{D}}_{1:N}]^{-1}\) have Euclidean length bounded by \(\sqrt{2}\), we have

$$\begin{aligned} \sum _{i=1}^N |r_i| = \sum _{i=1}^N \sqrt{\omega _i} \left( |r_i|/\sqrt{\omega _i}\right) \le \left( \sum _{i=1}^N \omega _i \right) ^{1/2} \left( \sum _{i=1}^N r_i^2/\omega _i \right) ^{1/2} \le 2. \end{aligned}$$
(10.7)

Consequently, the absolute row sums for \(\mathbf{{D}}_{1:N}^{-1}\) are all bounded by 2, or equivalently, \(\Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty \le 2\). Given any polynomial \(p \in \mathcal{{P}}_N\) with \(p(-1) = 0\) and \(|\dot{p}(\tau _i)| \le 1\) for \(1 \le i \le N\), it is observed in Section 9 of [36] that \(\Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty \ge \)\(\max \{p(\tau _i) : 1 \le i \le N\}\). Take \(p(\tau ) = 1 + \tau \) to deduce that \(\Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty \ge 1 + \tau _N\). Hence, \(1 + \tau _N \le \Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty \le 2\). Since \(\tau _N = 1\) for the Radau points, it follows that \(\Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty = 2\). For the Gauss points, \(\tau _N\) approaches 1 as N tends to infinity; consequently, \(\Vert \mathbf{{D}}_{1:N}^{-1}\Vert _\infty \) approaches 2 as N tends to infinity for the Gauss points. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hager, W.W., Hou, H., Mohapatra, S. et al. Convergence rate for a Radau hp collocation method applied to constrained optimal control. Comput Optim Appl 74, 275–314 (2019). https://doi.org/10.1007/s10589-019-00100-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00100-1

Keywords

Mathematics Subject Classification

Navigation