Skip to main content
Log in

Subchromosomal karyotype evolution in Equidae

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Equidae is a small family which comprises horses, African and Asiatic asses, and zebras. Despite equids having diverged quite recently, their karyotypes underwent rapid evolution which resulted in extensive differences among chromosome complements in respective species. Comparative mapping using whole-chromosome painting probes delineated genome-wide chromosome homologies among extant equids, enabling us to trace chromosome rearrangements that occurred during evolution. In the present study, we performed subchromosomal comparative mapping among seven Equidae species, representing the whole family. Region-specific painting and bacterial artificial chromosome probes were used to determine the orientation of evolutionarily conserved segments with respect to centromere positions. This allowed assessment of the configuration of all fusions occurring during the evolution of Equidae, as well as revealing discrepancies in centromere location caused by centromere repositioning or inversions. Our results indicate that the prevailing type of fusion in Equidae is centric fusion. Tandem fusions of the type telomere–telomere occur almost exclusively in the karyotype of Hartmann’s zebra and are characteristic of this species’ evolution. We revealed inversions in segments homologous to horse chromosomes 3p/10p and 13 in zebras and confirmed inversions in segments 4/31 in African ass, 7 in horse and 8p/20 in zebras. Furthermore, our mapping results suggested that centromere repositioning events occurred in segments homologous to horse chromosomes 7, 8q, 10p and 19 in the African ass and an element homologous to horse chromosome 16 in Asiatic asses. Centromere repositioning in chromosome 1 resulted in three different chromosome types occurring in extant species. Heterozygosity of the centromere position of this chromosome was observed in the kiang. Other subtle changes in centromere position were described in several evolutionary conserved chromosomal segments, suggesting that tiny centromere repositioning or pericentric inversions are quite frequent in zebras and asses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

EAS:

Equus asinus

EBU:

Equus burchelli

ECA:

Equus caballus

EGR:

Equus grevyi

EHK:

Equus hemionus kulan

EKI:

Equus kiang

EZH:

Equus zebra hartmannae

References

  • Brinkmeyer-Langford C, Raudsepp T, Lee EJ et al (2005) A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals. Mamm Genome 16:631–649

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Nergadze SG, Magnani E et al (2006) Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87:777–782

    Article  PubMed  CAS  Google Scholar 

  • de la Seña C, Chowdhary BP, Gustavsson I (1995) Localization of the telomeric (TTAGGG) n sequences in chromosomes of some domestic animals by fluorescence in situ hybridization. Hereditas 123:269–274

    Article  PubMed  Google Scholar 

  • Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962

    Article  PubMed  CAS  Google Scholar 

  • George M Jr, Ryder OA (1986) Mitochondrial DNA evolution in the genus Equus. Mol Biol Evol 3:535–546

    PubMed  CAS  Google Scholar 

  • Kruger K, Gaillard C, Stranzinger G, Rieder S (2005) Phylogenetic analysis and species allocation of individual equids using microsatellite data. J Anim Breed Genet 122:78–86

    Article  PubMed  Google Scholar 

  • Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10:571–577

    Article  PubMed  CAS  Google Scholar 

  • Lear TL (2001) Chromosomal distribution of the telomere sequence (TTAGGG)(n) in the Equidae. Cytogenet Cell Genet 93:127–130

    Article  PubMed  CAS  Google Scholar 

  • Leeb T, Vogl C, Zhu B et al (2006) A human–horse comparative map based on equine BAC end sequences. Genomics 87:772–776

    Article  PubMed  CAS  Google Scholar 

  • Locke DP, Hillier LW, Warren WC et al (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469:529–533

    Article  PubMed  CAS  Google Scholar 

  • Musilova P, Kubickova S, Vychodilova-Krenkova L et al (2005) Cytogenetic mapping of immunity-related genes in the domestic horse. Anim Genet 36:507–510

    Article  PubMed  CAS  Google Scholar 

  • Musilova P, Kubickova S, Zrnova E, Horin P, Vahala J, Rubes J (2007) Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes. Chromosome Res 15:807–813

    Article  PubMed  CAS  Google Scholar 

  • Musilova P, Kubickova S, Horin P, Vodicka R, Rubes J (2009) Karyotypic relationships in Asiatic asses (kulan and kiang) as defined using horse chromosome arm-specific and region-specific probes. Chromosome Res 17:783–790

    Article  PubMed  CAS  Google Scholar 

  • Musilova P, Kubickova S, Hornak M, Cernohorska H, Vahala J, Rubes J (2010) Different fusion configurations of evolutionarily conserved segments in karyotypes of Potamochoerus porcus and Phacochoerus africanus. Cytogenet Genome Res 129:305–309

    Article  PubMed  CAS  Google Scholar 

  • Myka JL, Lear TL, Houck ML, Ryder OA, Bailey E (2003a) Homologous fission event(s) implicated for chromosomal polymorphisms among five species in the genus Equus. Cytogenet Genome Res 102:217–221

    Article  PubMed  CAS  Google Scholar 

  • Myka JL, Lear TL, Houck ML, Ryder OA, Bailey E (2003b) FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E. przewalskii). Cytogenet Genome Res 102:222–225

    Article  PubMed  CAS  Google Scholar 

  • Nowak RM (1999) Walker’s mammals of the world, vol. 2, 6th edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Oakenfull EA, Clegg JB (1998) Phylogenetic relationships within the genus Equus and the evolution of alpha and theta globin genes. J Mol Evol 47:772–783

    Article  PubMed  CAS  Google Scholar 

  • Oakenfull EA, Lim HN, Ryder OA (2000) A survey of equid mitochondrial DNA: implications for the evolution, genetic diversity and conservation of Equus. Conserv Genet 1:341–355

    Article  CAS  Google Scholar 

  • Piras FM, Nergadze SG, Poletto V et al (2009) Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning. Cytogenet Genome Res 126:165–172

    Article  PubMed  CAS  Google Scholar 

  • Piras FM, Nergadze SG, Magnani E et al (2010) Uncoupling of satellite DNA and centromeric function in the genus Equus. PLoS Genet 6:e1000845

    Article  PubMed  Google Scholar 

  • Raudsepp T, Christensen K, Chowdhar BP (2000) Cytogenetics of donkey chromosomes: nomenclature proposal based on GTG-banded chromosomes and depiction of NORs and telomeric sites. Chromosome Res 8:659–670

    Article  PubMed  CAS  Google Scholar 

  • Raudsepp T, Lear TL, Chowdhary BP (2002) Comparative mapping in equids: the asine X chromosome is rearranged compared to horse and Hartmann’s mountain zebra. Cytogenet Genome Res 96:206–209

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Messaoudi C, Lombard M, Dutrillaux B (2001) Chromosome homologies between man and mountain zebra (Equus zebra hartmannae) and description of a new ancestral synteny involving sequences homologous to human chromosomes 4 and 8. Cytogenet Cell Genet 93:291–296

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ, Ruiz-Herrera A, Avise JC (2008) Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. Proc Natl Acad Sci U S A 105:14477–1481

    Article  PubMed  CAS  Google Scholar 

  • Rocchi M, Archidiacono N, Schempp W, Capozzi O, Stanyon R (2012) Centromere repositioning in mammals. Heredity 108:59–67

    Article  PubMed  CAS  Google Scholar 

  • Rubes J, Pagacova E, Kopecna O et al (2007) Karyotype, centric fusion polymorphism and chromosomal aberrations in captive-born mountain reedbuck (Redunca fulvorufula). Cytogenet Genome Res 116:263–268

    Article  PubMed  CAS  Google Scholar 

  • Ryder OA, Epel NC, Benirschke K (1978) Chromosome banding studies of the Equidae. Cytogenet Cell Genet 20:323–350

    Article  Google Scholar 

  • Santani A, Raudsepp T, Chowdhary BP (2002) Interstitial telomeric sites and NORs in Hartmann’s zebra (Equus zebra hartmannae) chromosomes. Chromosome Res 10:527–534

    Article  PubMed  CAS  Google Scholar 

  • Schermelleh L, Thalhammer S, Heckl W et al (1999) Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27:362–267

    PubMed  CAS  Google Scholar 

  • Steiner CC, Ryder OA (2011) Molecular phylogeny and evolution of the Perissodactyla. Zool J Linn Soc 163:1289–1303

    Article  Google Scholar 

  • Trifonov VA, Stanyon R, Nesterenko AI et al (2008) Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107

    Article  PubMed  CAS  Google Scholar 

  • Trifonov VA, Musilova P, Kulemsina AI (2012) Chromosome evolution in Perissodactyla. Cytogenet Genome Res 137:208–217

    Article  PubMed  CAS  Google Scholar 

  • Wade CM, Giulotto E, Sigurdsson S et al (2009) Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865–867

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Fu B, O'Brien PCM, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102:235–243

    Article  PubMed  CAS  Google Scholar 

  • Yang FT, Fu BY, O'Brien PCM, Nie WH, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12:65–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Grant Agency of the Czech Republic, project 523/09/1972 and CEITEC—Central European Institute of Technology (ED1.1.00/02.0068) from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Musilova.

Additional information

Responsible Editor: Fengtang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musilova, P., Kubickova, S., Vahala, J. et al. Subchromosomal karyotype evolution in Equidae. Chromosome Res 21, 175–187 (2013). https://doi.org/10.1007/s10577-013-9346-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-013-9346-z

Keywords

Navigation