Skip to main content
Log in

Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Using laser microdissection we prepared a set of horse chromosome arm-specific probes. Most of the probes were generated from horse chromosomes, some of them were derived from Equus zebra hartmannae. The set of probes were hybridized onto E. grevyi chromosomes in order to establish a genome-wide chromosomal correspondence between this zebra and horse. The use of arm-specific probes provided us with more information on the mutual arrangement of the genomes than we could obtain by means of whole-chromosome paints generated by flow sorting, even if we used reciprocal painting with probe sets from both species. By comparison of our results and results of comparative mapping in E. burchelli, we also established the chromosomal correspondence between E. grevyi and E. burchelli, providing evidence for a very close karyotypic relationship between these two zebra species. Establishment of the comparative map for E. grevyi contributes to the knowledge of the karyotypic phylogeny in the Equidae family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson L, Archibald A, Ashburner M et al. (1996) Comparative genome organization of vertebrates. The First International Workshop on Comparative Genome Organization. Mamm Genome 7: 717–734.

    Article  PubMed  CAS  Google Scholar 

  • Brinkmeyer-Langford C, Raudsepp T, Lee EJ et al. (2005) A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals. Mamm Genome 16: 631–649.

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Nergadze SG, Magnani E et al. (2006) Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87: 777–782.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary R, Raudsepp T, Guan X-Y, Zhang H, Chowdhary BP (1998) Zoo-FISH with microdissected arm specific paints for HSA2, 5, 6, 16, and 19 refines known homology with pig and horse chromosomes. Mamm Genome 9: 44–49.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhary BP, Raudsepp T, Fronicke L, Scherthan H (1998) Emerging patterns of comparative genome organisation in some mammalian species as revealed by Zoo-FISH. Genome Res 8: 577–589.

    PubMed  CAS  Google Scholar 

  • Chowdhary BP, Raudsepp TR (2000) Cytogenetics and physical gene maps. In: Bowling AT, Ruvinsky A, eds. The Genetics of the Horse. Wallingford, Oxon: CAB International, pp. 171–241.

    Google Scholar 

  • George M Jr, Ryder OA (1986) Mitochondrial DNA evolution in the genus Equus. Mol Biol Evol 3: 535–546.

    PubMed  CAS  Google Scholar 

  • Goh G, Raudsepp T, Durkin K et al. (2007) High-resolution gene maps of horse chromosomes 14 and 21: additional insights into evolution and rearrangements of HSA5 homologs in mammals. Genomics 89: 89–112.

    Article  PubMed  CAS  Google Scholar 

  • Goureau A, Yerle M, Schmitz A et al. (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36: 252–262.

    Article  PubMed  CAS  Google Scholar 

  • Gross M, Starke H, Trifonov V, Claussen U, Liehr T, Weise A (2006) A molecular cytogenetic study of chromosome evolution in chimpanzee. Cytogenet Genome Res 112: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • ISCNH (1997) Bowling AT, Breen M, Chowdhary BP et al. (Committee) International system for cytogenetic nomenclature of the domestic horse. Chromosome Res 5: 433–443.

    Google Scholar 

  • Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10: 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Meltzer PS, Guan XY, Burgess A, Trent JM (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nat Genet 1: 24–28.

    Article  PubMed  CAS  Google Scholar 

  • Mrasek K, Heller A, Rubtsov N et al. (2001) Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB). Cytogenet Cell Genet 93: 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Mrasek K, Heller A, Rubtsov N et al. (2003) Detailed Hylobates lar karyotype defined by 25-color FISH and multicolor banding. Int J Mol Med 12: 139–146.

    PubMed  Google Scholar 

  • Nowak RM (1999) Walker’s Mammals of the World, vol. 2, 6th edn. Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Pinton A, Ducos A, Yerle M (2003) Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting. Genet Sel Evol 35: 685–696.

    Article  PubMed  CAS  Google Scholar 

  • Raudsepp T, Chowdhary BP (1999) Construction of chromosome-specific paints for meta- and submetacentric autosomes and the sex chromosomes in the horse and their use to detect homologous chromosomal segments in the donkey. Chromosome Res 7: 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Messaoudi C, Lombard M, Dutrillaux B (2001) Chromosome homologies between man and mountain zebra (Equus zebra hartmannae) and description of a new ancestral synteny involving sequences homologous to human chromosomes 4 and 8. Cytogenet Cell Genet 93: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Rubes J, Pagacova E, Kopecna O et al. (2007) Karyotype, centric fusion polymorphism and chromosomal aberrations in captive-born mountain reedbuck (Redunca fulvorufula). Cytogenet Genome Res 116: 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Ryder OA, Epel NC, Benirschke K (1978) Chromosome banding studies of the Equidae. Cytogenet Cell Genet 20: 323–350.

    Google Scholar 

  • Schermelleh L, Thalhammer S, Heckl W et al. (1999) Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27: 362–367.

    PubMed  CAS  Google Scholar 

  • Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria A, Fronicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet 6: 342–347.

    Article  PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Trifonov V, Yang F, Ferguson-Smith MA, Robinson TJ (2003) Cross-species chromosome painting in the Perissodactyla: delimitation of homologous regions in Burchell’s zebra (Equus burchelli) and the white (Ceratotherium simum) and black rhinoceros (Diceros bicornis). Cytogenet Genome Res 103: 104–110.

    Article  PubMed  CAS  Google Scholar 

  • Verma RS, Babu A (1989) Human Chromosomes. Manual of Basic Techniques. New York: Pergamon.

    Google Scholar 

  • Whitehouse DB, Evans EP, Putt W, George AM (1984) Karyotypes of the East African common zebra, Equus burchelli: centric fission in a pedigree. Cytogenet Cell Genet 38: 171–175.

    Google Scholar 

  • Wienberg J (2004) The evolution of eutherian chromosomes. Curr Opin Genet Dev 14: 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Wijers ER, Zijlstra C, Lenstra JA (1993) Rapid evolution of horse satellite DNA. Genomics 18: 113–117.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Fu B, O’Brien PC, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102: 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Fu B, O’Brien PC, Nie W, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12: 65–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Musilova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musilova, P., Kubickova, S., Zrnova, E. et al. Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes. Chromosome Res 15, 807–813 (2007). https://doi.org/10.1007/s10577-007-1164-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1164-8

Key words

Navigation