Skip to main content
Log in

Ornithine In Vivo Administration Disrupts Redox Homeostasis and Decreases Synaptic Na+, K+-ATPase Activity in Cerebellum of Adolescent Rats: Implications for the Pathogenesis of Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) Syndrome

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an inborn error of metabolism caused by a defect in the transport of ornithine (Orn) into mitochondrial matrix leading to accumulation of Orn, homocitrulline (Hcit), and ammonia. Affected patients present a variable clinical symptomatology, frequently associated with cerebellar symptoms whose pathogenesis is poorly known. Although in vitro studies reported induction of oxidative stress by the metabolites accumulating in HHH syndrome, so far no report evaluated the in vivo effects of these compounds on redox homeostasis in cerebellum. Therefore, the present work was carried out to investigate the in vivo effects of intracerebellar administration of Orn and Hcit on antioxidant defenses (reduced glutathione concentrations and the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase), lipid oxidation (malondialdehyde concentrations), as well as on the activity of synaptic Na+, K+-ATPase, an enzyme highly vulnerable to free radical attack, in the cerebellum of adolescent rats. Orn significantly increased malondialdehyde levels and the activities of all antioxidant enzymes, and reduced Na+, K+-ATPase activity. In contrast, glutathione concentrations were not changed by Orn treatment. Furthermore, intracerebellar administration of Hcit was not able to alter any of these parameters. The present data show for the first time that Orn provokes in vivo lipid oxidative damage, activation of the enzymatic antioxidant defense system, and reduction of the activity of a crucial enzyme involved in neurotransmission. It is presumed that these pathomechanisms may contribute at least partly to explain the neuropathology of cerebellum abnormalities and the ataxia observed in patients with HHH syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebi H (1984) Catalase, in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Al-Hassnan ZN, Rashed MS, Al-Dirbashi OY, Patay Z, Rahbeeni Z, Abu-Amero KK (2008) Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome with stroke-like imaging presentation: clinical, biochemical and molecular analysis. J Neurol Sci 15:187–194. doi:10.1016/j.jns.2007.08.003

    Article  Google Scholar 

  • Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Zanatta A, Viegas CM, Dutra-Filho CS, Wajner M (2009) Evidence that the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome induce oxidative stress in brain of young rats. Int J Dev Neurosci 7:635–641. doi:10.1016/j.ijdevneu.2009.08.004

    Article  Google Scholar 

  • Amaral AU, Seminotti B, Cecatto C, Fernandes CG, Busanello EN, Zanatta Â, Kist LW, Bogo MR, de Souza DO, Woontner M, Goodman S, Koeller DM, Wajner M (2012) Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: a possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 107:375–382. doi:10.1016/j.ymgme.2012.08.016

    Article  CAS  PubMed  Google Scholar 

  • Bagh MB, Maiti AK, Jana S, Banerjee K, Roy A, Chakrabarti S (2008) Quinone and oxyradical scavenging properties of N-acetylcysteine prevent dopamine mediated inhibition of Na+, K+-ATPase and mitochondrial electron transport chain activity in rat brain: implications in the neuroprotective therapy of Parkinson’s disease. Free Radic Res 42:574–581. doi:10.1080/10715760802158430

    Article  CAS  PubMed  Google Scholar 

  • Braissant O (2010) Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 100(1):S3–S12. doi:10.1016/j.ymgme.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  • Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  • Busanello EN, Viegas CM, Moura AP, Tonin AM, Grings M, Vargas CR, Wajner M (2010) In vitro evidence that phytanic acid compromises Na(+), K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats. Brain Res 1352:231–238. doi:10.1016/j.brainres.2010.07.012

    Article  CAS  PubMed  Google Scholar 

  • Busanello EN, Viegas CM, Tonin AM, Grings M, Moura AP, de Oliveira AB, Eichler P, Wajner M (2011) Neurochemical evidence that pristanic acid impairs energy production and inhibits synaptic Na(+), K(+)-ATPase activity in brain of young rats. Neurochem Res 36:1101–1107. doi:10.1007/s11064-011-0453-y

    Article  CAS  PubMed  Google Scholar 

  • Busanello EN, Zanatta A, Tonin AM, Viegas CM, Vargas CR, Leipnitz G, Ribeiro CA, Wajner M (2013) Marked inhibition of Na+, K(+)-ATPase activity and the respiratory chain by phytanic acid in cerebellum from young rats: possible underlying mechanisms of cerebellar ataxia in Refsum disease. J Bioenerg Biomembr 45:137–144. doi:10.1007/s10863-012-9491-7

    Article  CAS  PubMed  Google Scholar 

  • Busanello EN, Lobato VG, Zanatta Â, Borges CG, Tonin AM, Viegas CM, Manfredini V, Ribeiro CA, Vargas CR, de Souza DO, Wajner M (2014) Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats. Cerebellum 13:751–759. doi:10.1007/s12311-014-0593-0

    Article  CAS  PubMed  Google Scholar 

  • Calberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  Google Scholar 

  • Camacho J, Rioseco-Camacho N (2012) Hyperornithinemia-Hyperammonemia-Homocitrullinuria Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, Smith RJH, Stephens K (eds) Gene Reviews®. University of Washington, Seattle

    Google Scholar 

  • Camacho JA, Obie C, Biery B, Goodman BK, Hu CA, Almashanu S, Steel G, Casey R, Lambert M, Mitchell GA, Valle D (1999) Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat Genet 2:151–158

    Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  • Cousin M, Nicholls D, Pocock J (1995) Modulation of ion gradients and glutamate release in cultured cerebellar granule cells by ouabain. J Neurochem 64:2097–2104

    Article  CAS  PubMed  Google Scholar 

  • da Rosa MS, Ribeiro CAJ, Seminotti B, Teixeira RR, Amaral AU, Coelho DM, de Oliveira FH, Leipnitz G, Wajner M (2015) In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2015.02.008

    PubMed  Google Scholar 

  • de Lores Arnaiz GR, López Ordieres MG (2014) Brain Na+, K+-ATPase activity in aging and disease. Int J Biomed Sci 10:85–102

    PubMed Central  PubMed  Google Scholar 

  • Debray FG, Lambert M, Lemieux B, Soucy JF, Drouin R, Fenyves D, Dubé J, Maranda B, Laframboise R, Mitchell GA (2008) Phenotypic variability among patients with hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome homozygous for the delF188 mutation in SLC25A15. J Med Genet 45:759–764. doi:10.1136/jmg.2008.059097

    Article  CAS  PubMed  Google Scholar 

  • Dickey CA, Gordon MN, Wilcock DM, Herber DL, Freeman MJ, Morgan D (2005) Dysregulation of Na+/K+ ATPase by amyloid in APP + PS1 transgenic mice. BMC Neurosci 6:7. doi:10.1186/1471-2202-6-7

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellis DZ, Rabe J, Sweadner KJ (2003) Global loss of Na, K-ATPase and its nitric oxide-mediated regulation in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 23:4–51

    Google Scholar 

  • Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  CAS  PubMed  Google Scholar 

  • Erecinska M, Cherian S, Silver IA (2004) Energy metabolism in mammalian brain during development. Prog Neurobiol 73:397–445. doi:10.1016/j.pneurobio.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  • Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosol. Arch Biochem Biophys 388:261–266. doi:10.1006/abbi.2001.2292

    Article  CAS  PubMed  Google Scholar 

  • Fecarotta S, Parenti G, Vajro P, Zuppaldi A, Della Casa R, Carbone MT, Correra A, Torre G, Riva S, Dionisi-Vici C, Santorelli FM, Andria G (2006) HHH syndrome (hyperornithinaemia, hyperammonaemia, homocitrullinuria), with fulminant hepatitis-like presentation. J Inherit Metab Dis 29:186–189. doi:10.1007/s10545-006-0120-7

    Article  CAS  PubMed  Google Scholar 

  • Filosto M, Alberici A, Tessa A, Padovani A, Santorelli FM (2013) Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome in adulthood: a rare recognizable condition. Neurol Sci 34:1699–1701. doi:10.1007/s10072-012-1266-8

    Article  PubMed  Google Scholar 

  • Gropman A (2010) Brain imaging in Urea cycle disorders. Mol Genet Metab 100:S20–S30. doi:10.1016/j.ymgme.2010.01.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gropman AL, Batshaw ML (2004) Cognitive outcome in urea cycle disorders. Mol Genet Metab 81:S58–S62. doi:10.3174/ajnr.A2122

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge JMC (eds) Free Radicals in Biology and Medicine, 4th edn. Oxford University Press Inc, Oxford, pp 187–340

    Google Scholar 

  • Haust MD, Gatfield PD, Gordon BA (1981) Ultrastructure of hepatic mitochondria in a child with hyperornithinemia, hyperammonemia, and homocitrullinuria. Hum Pathol 12:212–222

    Article  CAS  PubMed  Google Scholar 

  • Hitschke K, Buhler R, Apell HJ, Stark G (1994) Inactivation of the Na, K-ATPase by radiation-induced free radicals. Evidence for a radical-chain mechanism. FEBS Lett 353:297–300

    Article  CAS  PubMed  Google Scholar 

  • Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  CAS  PubMed  Google Scholar 

  • Joseph MH, Marsden CA (1986) Amino acids and small peptides. In: Lim CK (ed) HPLC of small peptides. IRL Press, Oxford, pp 13–27

    Google Scholar 

  • Korman SH, Kanazawa N, Abu-Libdeh B, Gutman A, Tsujino S (2004) Hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome with evidence of mitochondrial dysfunction due to a novel SLC25A15 (ORNT1) gene mutation in a Palestinian family. J Neurol Sci 218:53–58. doi:10.1016/j.jns.2003.10.017

    Article  CAS  PubMed  Google Scholar 

  • Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 981:193–200. doi:10.1016/S0006-8993(03)03035-X

    Article  CAS  PubMed  Google Scholar 

  • Kurella E, Kukley M, Tyulina O, Dobrota D, Matejovicova M, Mezesova V, Boldyrev A (1997) Kinetic parameters of Na/K-ATPase modified by free radicals in vitro and in vivo. Ann N Y Acad Sci 834:661–665. doi:10.1111/j.1749-6632.1997.tb52344.x

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarayanan V, Drab-Weiss EA, Roebuck KA (1998) H2O2 and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-kappaB to the interleukin-8 promoter in endothelial and epithelial cells. J Biol Chem 273:32670–32678

    Article  CAS  PubMed  Google Scholar 

  • Lees G (1993) The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. J Neurol Sci 114:119–122

    Article  CAS  PubMed  Google Scholar 

  • Lees GJ, Leong W (1995) The sodium-potassium ATPase inhibitor ouabain is neurotoxic in the rat substantia nigra and striatum. Neurosci Lett 188:113–116. doi:10.1016/0304-3940(95)11413-Q

    Article  CAS  PubMed  Google Scholar 

  • Leipnitz G, Amaral AU, Zanatta A, Seminotti B, Fernandes CG, Knebel LA, Vargas CR, Wajner M (2010) Neurochemical evidence that phytanic acid induces oxidative damage and reduces the antioxidant defenses in cerebellum and cerebral cortex of rats. Life Sci 87:275–280. doi:10.1016/j.lfs.2010.06.015

    Article  CAS  PubMed  Google Scholar 

  • Lekic T, Tang J, Zhang JH (2008) Rat model of intracerebellar hemorrhage. Acta Neurochir Suppl 105:131–134

    Article  CAS  PubMed  Google Scholar 

  • Leong SF, Clark JB (1984) Regional development of glutamate dehydrogenase in the rat brain. J Neurochem 43:106–111

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Michigan, pp 243–247

    Google Scholar 

  • Miyamoto T, Kanazawa N, Hayakawa C, Tsujino S (2002) A novel mutation, P126R, in a Japanese patient with HHH syndrome. Pediatr Neurol 26:65–67. doi:10.1016/S0887-8994(01)00335-6

    Article  PubMed  Google Scholar 

  • Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of ratbrain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81:769–776

    Article  CAS  PubMed  Google Scholar 

  • Moura AP, Ribeiro CA, Zanatta A, Busanello EN, Tonin AM, Wajner M (2012) 3-Methylcrotonylglycine disrupts mitochondrial energy homeostasis and inhibits synaptic Na(+), K (+)-ATPase activity in brain of young rats. Cell Mol Neurobiol 32:297–307. doi:10.1007/s10571-011-9761-7

    Article  CAS  PubMed  Google Scholar 

  • Muriel P, Sandoval G (2000) Nitric oxide and peroxynitrite anion modulate liver plasma membrane fluidity and Na(+)/K(+)-ATPase activity. Nitric Oxide 4:333–342. doi:10.1006/niox.2000.0285

    Article  CAS  PubMed  Google Scholar 

  • Nelson SK, Bose SK, Grunwald GK, Myhill P, McCord JM (2006) The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy. Free Radical Bio Med 40:341–347. doi: 10.1016/j.freeradbiomed.2005.08.043

    Article  CAS  Google Scholar 

  • Norenberg MD, Rao KV, Jayakumar AR (2004) Ammonia neurotoxicity and the mitochondrial permeability transition. J Bioenerg Biomembr 36:303–307

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F (2008) Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta 1777:564–578. doi:10.1016/j.bbabio.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266:11632–11639

    CAS  PubMed  Google Scholar 

  • Satoh E, Nakazato Y (1992) On the mechanism of ouabain-induced release of acetylcholine from synaptosomes. J Neurochem 58:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Seminotti B, Fernandes CG, Leipnitz G, Amaral AU, Zanatta A, Wajner M (2011) Neurochemical evidence that lysine inhibits synaptic Na+, K+-ATPase activity and provokes oxidative damage in striatum of young rats in vivo. Neurochem Res 36:205–214. doi:10.1007/s11064-010-0302-4

    Article  CAS  PubMed  Google Scholar 

  • Seminotti B, Amaral AU, da Rosa MS, Fernandes CG, Leipnitz G, Olivera-Bravo S, Barbeito L, Ribeiro CA, de Souza DO, Woontner M, Goodman SI, Koeller DM, Wajner M (2013) Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation. Mol Genet Metab 108:30–39. doi:10.1016/j.ymgme.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  • Shih VE, Ficicioglu C (2000) Genotype and phenotype findings in the hyperornithinemia, hyperammonemia, homocitrullinuria (HHH) syndrome. J Inherit Metab Dis 23(Suppl):72

    Google Scholar 

  • Smith L, Lambert MA, Brochu P, Jasmin G, Qureshi IA, Seidman EG (1992) Hyperornithinemia, hyperammonemia, homocitrullinuria (HHH) syndrome: presentation as acute liver disease with coagulopathy. J Pediatr Gastroenterol Nutr 15:431–436

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. doi:10.1007/s00401-009-0619-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Tezcan K, Louie KT, Qu Y, Velasquez J, Zaldivar F, Rioseco-Camacho N, Camacho JA (2012) Adult-onset presentation of a hyperornithinemia-hyperammonemia-homocitrullinuria patient without prior history of neurological complications. JIMD Rep 3:97–102. doi:10.1007/8904_2011_71

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+ + K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. Biochem J 220:301–307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsujino S, Kanazawa N, Ohashi T, Eto Y, Saito T, Kira J, Yamada T (2000) Three novel mutations (G27E, insAAC, R179X) in the ORNT1 gene of Japanese patients with hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome. Ann Neurol 47:625–631. doi:10.1002/1531-8249(200005)47:5<625:AID-ANA10>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  • Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, Kerr DS, Diaz GA, Seashore MR, Lee HS, McCarter RJ, Krischer JP, Batshaw ML (2008) Cross sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab 94:397–402. doi:10.1016/j.ymgme.2008.05.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valle D, Simell O (2001) The hyperornithinemias. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill Professional, New York, pp 1147–1185

    Google Scholar 

  • Viegas CM, Zanatta A, Knebel LA, Schuck PF, Tonin AM, Ferreira Gda C, Amaral AU, Dutra-Filho CS, Wannmacher CM, Wajner M (2009) Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats. Brain Res 1291:102–112. doi:10.1016/j.brainres.2009.07.021

    Article  CAS  PubMed  Google Scholar 

  • Viegas CM, Busanello EN, Tonin AM, de Moura AP, Grings M, Ritter L, Schuck PF, Ferreira Gda C, Sitta A, Vargas CR, Wajner M (2011) Dual mechanism of brain damage induced in vivo by the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Brain Res 1369:235–244. doi:10.1016/j.brainres.2010.10.112

    Article  CAS  PubMed  Google Scholar 

  • Viegas CM, Busanello EN, Tonin AM, Grings M, Moura AP, Ritter L, Zanatta A, Knebel LA, Lobato VA, Pettenuzzo LF, Vargas CR, Leipnitz G, Wajner M (2012) Chronic postnatal ornithine administration to rats provokes learning deficit in the open field task. Metab Brain Dis 27:479–486. doi:10.1007/s11011-012-9322-x

    Article  CAS  PubMed  Google Scholar 

  • Vignini A, Nanetti L, Moroni C, Tanase L, Bartolini M, Luzzi S, Provinciali L, Mazzanti L (2007) Modifications of platelet from Alzheimer disease patients: a possible relation between membrane properties and NO metabolites. Neurobiol Aging 28:987–994. doi:10.1016/j.neurobiolaging.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Chou KC (2012) Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1. PLoS One 7:e31048. doi:10.1371/journal.pone.0031048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    Article  CAS  PubMed  Google Scholar 

  • Wheeler K, Walker J, Barker D (1975) Lipid requirement of the membrane sodium-plus-potassium ion-dependent adenosine triphosphatase system. Biochem J 146:713–722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yagi K (1998) Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 108:107–110

    CAS  PubMed  Google Scholar 

  • Yousef MI, El-Hendy HA, El-Demerdash FM, Elagamy EI (2002) Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology 175:223–234. doi:10.1016/S0300-483X(02)00049-5

    Article  CAS  PubMed  Google Scholar 

  • Zanatta A, Viegas CM, Tonin AM, Busanello EN, Grings M, Moura AP, Leipnitz G, Wajner M (2013) Disturbance of redox homeostasis by ornithine and homocitrulline in rat cerebellum: a possible mechanism of cerebellar dysfunction in HHH syndrome. Life Sci 93:161–168. doi:10.1016/j.lfs.2013.06.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa de Apoio a Núcleos de Excelência (PRONEX II), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS), Financiadora de estudos e projetos (FINEP), Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00, and Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanatta, Â., Viegas, C.M., Hickmann, F.H. et al. Ornithine In Vivo Administration Disrupts Redox Homeostasis and Decreases Synaptic Na+, K+-ATPase Activity in Cerebellum of Adolescent Rats: Implications for the Pathogenesis of Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) Syndrome. Cell Mol Neurobiol 35, 797–806 (2015). https://doi.org/10.1007/s10571-015-0173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0173-y

Keywords

Navigation