Skip to main content

Advertisement

Log in

Neurochemical Evidence that Lysine Inhibits Synaptic Na+,K+-ATPase Activity and Provokes Oxidative Damage in Striatum of Young Rats In vivo

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Lysine (Lys) accumulation in tissues and biological fluids is the biochemical hallmark of patients affected by familial hyperlysinemia (FH) and other inherited metabolic disorders. In the present study we investigated the effects of acute administration of Lys on relevant parameters of energy metabolism and oxidative stress in striatum of young rats. We verified that Lys in vivo intrastriatal injection did not change the citric acid cycle function and creatine kinase activity, but, in contrast, significantly inhibited synaptic Na+,K+-ATPase activity in striatum prepared 2 and 12 h after injection. Moreover, Lys induced lipid peroxidation and diminished the concentrations of glutathione 2 h after injection. These effects were prevented by the antioxidant scavengers melatonin and the combination of α-tocopherol and ascorbic acid. Lys also inhibited glutathione peroxidase activity 12 h after injection. Therefore it is assumed that inhibition of synaptic Na+,K+-ATPase and oxidative damage caused by brain Lys accumulation may possibly contribute to the neurological manifestations of FH and other neurometabolic conditions with high concentrations of this amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dancis J, Hutzler J, Cox RP et al (1976) Multiple enzyme defects in familial hyperlysinemia. Pediatr Res 10:686–691

    CAS  PubMed  Google Scholar 

  2. Cox RP (2001) Errors of lysine metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill Inc, New York, pp 1965–1970

    Google Scholar 

  3. Cox RP, Dancis J (1995) Errors of lysine metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill Inc, New York, pp 1233–1238

    Google Scholar 

  4. Cox RP, Markovitz PJ, Chuang DT (1986) Familial hyperlysinemias-multiple enzyme deficiencies associated with the bifunctional aminoadipic semialdehyde synthase. Trans Am Clin Climatol Assoc 97:69–81

    CAS  PubMed  Google Scholar 

  5. Hoffmann GF (2006) Cerebral organic acid disorders and other disorders of lysine catabolism. In: Fernandes J, Saudubray J-M, van den Berghe G, Walter JH (eds) Inborn metabolic diseases. Springer, Heidelberg, pp 293–306

    Chapter  Google Scholar 

  6. Woody NC (1964) Hyperlysinemia. Am J Dis Child 108:543–553

    CAS  PubMed  Google Scholar 

  7. Ghadimi H, Binnington VI, Pecora P (1965) Hyperlysinemia associated with retardation. N Engl J Med 273:723

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong MD, Robinow M (1967) A case of hyperlysinemia: biochemical and clinical observations. Pediatrics 39:546

    CAS  PubMed  Google Scholar 

  9. Ozalp I, Hasanoglu A, Tuncbilek E et al (1981) Hyperlysinemia without clinical findings. Acta Pediatr Scand 70:951–953

    Article  CAS  Google Scholar 

  10. Gregory JW, Beail N, Boyle NA et al (1989) Dietary treatment of hyperlysinaemia. Arch Dis Child 64:716–720

    Article  CAS  PubMed  Google Scholar 

  11. van Maldegem BT, Duran M, Wanders RJ et al (2006) Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. JAMA 296:943–952

    Article  PubMed  Google Scholar 

  12. Battisti C, Forte F, Molinelli M et al (2007) A new case of short-chain acyl-CoA dehydrogenase deficiency: clinical, biochemical, genetic and 1H-NMR spectroscopic studies. Neurol Sci 28:328–330

    Article  CAS  PubMed  Google Scholar 

  13. Tein I, Elpeleg O, Ben-Zeev B et al (2008) Short-chain acyl-CoA dehydrogenase gene mutation (c.319C > T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin. Mol Genet Metab 93:179–189

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt SP, Corydon TJ, Pedersen CB et al (2010) Misfolding of short-chain acyl-CoA dehydrogenase leads to mitochondrial fission and oxidative stress. Mol Genet Metab 100:155–162

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen CB, Zolkipli Z, Vang S et al (2010) Antioxidant dysfunction: potential risk for neurotoxicity in ethylmalonic aciduria. J Inherit Metab Dis 33:211–222

    Article  CAS  PubMed  Google Scholar 

  16. Yiannikas C, Cordato D (1996) Familial hyperlysinemia in a patient presenting with progressive spastic paraparesis. Neurology 47:846

    CAS  PubMed  Google Scholar 

  17. Nyhan WL, Ozand PT (1998) Atlas of metabolic diseases. Chapman and Hall, London, pp 76–78

    Google Scholar 

  18. Seminotti B, Leipnitz G, Amaral AU et al (2008) Lysine induces lipid and protein damage and decreases reduced glutathione concentrations in brain of young rats. Int J Dev Neurosci 26:693–698

    Article  CAS  PubMed  Google Scholar 

  19. Tonin AM, Ferreira GC, Schuck PF et al (2009) Inhibition of creatine kinase activity by lysine in rat cerebral cortex. Metab Brain Dis 24:349–360

    Article  CAS  PubMed  Google Scholar 

  20. García-Cazorla A, Rabier D, Touati G et al (2006) Pyruvate carboxylase deficiency: metabolic characteristics and new neurological aspects. Ann Neurol 59:121–127

    Article  PubMed  Google Scholar 

  21. Steenweg ME, Salomons GS, Yapici Z et al (2009) L-2-Hydroxyglutaric aciduria: pattern of MR imaging abnormalities in 56 patients. Radiology 251:856–865

    Article  PubMed  Google Scholar 

  22. Braissant O (2010) Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 100:S3–S12

    Article  CAS  PubMed  Google Scholar 

  23. Marin-Valencia I, Roe CR, Pascual JM (2010) Pyruvate carboxylase deficiency: mechanisms, mimics and anaplerosis. Mol Genet Metab 101:9–17

    Article  CAS  PubMed  Google Scholar 

  24. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  25. Vasques V, Brinco F, Viegas CM et al (2006) Creatine prevents behavioral alterations caused by methylmalonic acid administration into the hippocampus of rats in the open field task. J Neurol Sci 244:23–29

    Article  CAS  PubMed  Google Scholar 

  26. Sigala F, Theocharis S, Sigalas K et al (2006) Therapeutic value of melatonin in an experimental model of liver injury and regeneration. J Pineal Res 40:270–279

    Article  CAS  PubMed  Google Scholar 

  27. Wyse ATS, Zugno AI, Streck EL et al (2002) Inhibition of Na+, K+ -ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro CAJ, Leipnitz G, Amaral AU et al (2009) Creatine administration prevents Na+, K+ -ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats. Brain Res 1262:81–88

    Article  CAS  PubMed  Google Scholar 

  29. Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation–sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  CAS  PubMed  Google Scholar 

  30. Evelson P, Travacio M, Repetto M et al (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  CAS  PubMed  Google Scholar 

  31. Dutra-Filho CS, Wajner M, Wannmacher CM et al (1995) 2-hydroxybutyrate and 4-hydroxybutyrate inhibit CO2 formation from labeled substrates by rat cerebral cortex. Biochem Soc Trans 23:228S

    CAS  PubMed  Google Scholar 

  32. Hughes BP (1962) A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  33. da Silva CG, Bueno ARF, Schuck PF et al (2004) Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro. Neurochem Int 44:45–52

    Article  PubMed  Google Scholar 

  34. Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+, K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. Biochem J 220:301–307

    CAS  PubMed  Google Scholar 

  35. Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  36. Yagi K (1998) Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol 108:107–110

    CAS  PubMed  Google Scholar 

  37. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  38. Wendel A (1981) Glutathione peroxidase. Meth Enzymol 77:325–332

    Article  CAS  PubMed  Google Scholar 

  39. Aebi H (1984) Catalase, in vitro. Meth Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  40. Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 243–247

  41. Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochem J 218:131–138

    CAS  PubMed  Google Scholar 

  42. Lowry OH, Rosebrough NJ, Lewis-Farr A et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  43. Wheeler KP, Walker JA, Barker DM (1975) Lipid requirement of membrane Na+, K+ -dependent adenosine triphosphate system. Biochem J 146:713–722

    CAS  PubMed  Google Scholar 

  44. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  CAS  PubMed  Google Scholar 

  45. Erecinska M, Cherian S, Silver IA (2004) Energy metabolism in mammalian brain during development. Prog Neurobiol 73:397–445

    Article  CAS  PubMed  Google Scholar 

  46. Mazzanti L, Rabini RA, Biagini G et al (1992) Changes in membrane fluidity and Na+/K+-ATPase activity during human trophoblast cell culture. Eur J Biochem 206:881–885

    Article  CAS  PubMed  Google Scholar 

  47. Carfagna MA, Muhoberac BB (1993) Interactions of tricyclic drug analogs with synaptic plasma membranes: structure mechanism relationships in inhibition of neuronal Na+/K+-ATPase activity. Mol Pharmacol 44:129–141

    CAS  PubMed  Google Scholar 

  48. Kamboj SS, Chopra K, Sandhir R (2009) Hyperglycemia-induced alterations in synaptosomal membrane fluidity and activity of membrane bound enzymes: beneficial effect of N-acetylcysteine supplementation. Neuroscience 162:349–358

    Article  CAS  PubMed  Google Scholar 

  49. Rustin P, Rötig A (2002) Inborn errors of complex II—unusual human mitochondrial diseases. Biochim Biophys Acta 1553:117–122

    Article  CAS  PubMed  Google Scholar 

  50. Yousef MI, El Hendy HA, El-Demesdash FM et al (2002) Dietary zinc deficiency induced-changes in the activity of enzymes and the level of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology 175:223–234

    Article  CAS  PubMed  Google Scholar 

  51. Kimmelberg H, Pahadjopoulos D (1974) Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+K+)-stimulated adenosine triphosphatase. J Biol Chem 249:1071–1080

    Google Scholar 

  52. Abeywardena MY, Allen TM, Charnock JS (1983) Lipid-protein interactions of reconstituted membrane-associated adenosine triphosphatases. Biochim Biophys Acta 729:62–74

    Article  CAS  PubMed  Google Scholar 

  53. Halliwell B, Gutteridge JMC (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press Inc, Oxford, pp 187–267

    Google Scholar 

  54. Martin M, Macias M, Escames G et al (2000) Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J 14:1677–1679

    CAS  PubMed  Google Scholar 

  55. Acuña-Castroviejo D, Escames G, Macías M et al (1995) Cell protective role of melatonin in the brain. J Pineal Res 19:57–63

    Article  PubMed  Google Scholar 

  56. Reiter RJ, Melchiorri D, Sewerynek E et al (1995) A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res 18:1–11

    Article  CAS  PubMed  Google Scholar 

  57. Reiter RJ, Guerrero JM, Escames G et al (1997) Prophylactic actions of melatonin in oxidative neurotoxicity. Ann NY Acad Sci 825:70–78

    Article  CAS  PubMed  Google Scholar 

  58. Saudubray JM, Rabier D (2007) Biomarkers identified in inborn errors for lysine, arginine, and ornithine. J Nutr 137:1669S–1672S

    CAS  PubMed  Google Scholar 

  59. Grisar T (1984) Glial and neuronal Na+, K+ pump in epilepsy. Ann Neurol 16:S128–S134

    Article  CAS  PubMed  Google Scholar 

  60. Benari Y (1985) Limbic seizure and brain damage produced by kainic acid—mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14:375–403

    Article  CAS  Google Scholar 

  61. Lees GJ, Lehmann A, Sandberg M et al (1990) The neurotoxicity of ouabain, a sodium–potassium ATPase inhibitor in the rat hippocampus. Neurosci Lett 120:159–162

    Article  CAS  PubMed  Google Scholar 

  62. Satoh E, Nakazato Y (1992) On the mechanism of ouabain-induced release of acetylcholine from synaptosomes. J Neurochem 58:1038–1044

    Article  CAS  PubMed  Google Scholar 

  63. Lees GJ (1993) Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54:287–322

    Article  CAS  PubMed  Google Scholar 

  64. Lees GJ, Leong W (1995) The sodium–potassium ATPase inhibitor ouabain is neurotoxic in the rat substantia nigra and striatum. Neurosci Lett 188:113–116

    Article  CAS  PubMed  Google Scholar 

  65. Zinnanti WJ, Lazovic J (2010) Mouse model of encephalopathy and novel treatment strategies with substrate competition in glutaric aciduria type I. Mol Genet Metab 100:88–91

    Article  Google Scholar 

  66. Wyse AT, Streck EL, Barros SV et al (2000) Methylmalonate administration decreases Na+, K+-ATPase activity in cerebral cortex of rats. Neuroreport 11:2331–2334

    Article  CAS  PubMed  Google Scholar 

  67. Streck EL, Zugno AI, Tagliari B et al (2001) Inhibition of rat brain Na+, K+ -ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem Res 26:1195–1200

    Article  CAS  PubMed  Google Scholar 

  68. Wyse AT, Bavaresco CS, Bandinelli C et al (2001) Nitric oxide synthase inhibition by L-NAME prevents the decrease of Na+, K+-ATPase activity in midbrain of rats subjected to arginine administration. Neurochem Res 26:515–520

    Article  CAS  PubMed  Google Scholar 

  69. Streck EL, Matte C, Vieira PS et al (2002) Reduction of Na+, K+-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from CNPq, PRONEX II, FAPERGS, PROPESQ/UFRGS, FINEP research grant Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00 and INCT-EN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seminotti, B., Fernandes, C.G., Leipnitz, G. et al. Neurochemical Evidence that Lysine Inhibits Synaptic Na+,K+-ATPase Activity and Provokes Oxidative Damage in Striatum of Young Rats In vivo. Neurochem Res 36, 205–214 (2011). https://doi.org/10.1007/s11064-010-0302-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0302-4

Keywords

Navigation