Skip to main content

Advertisement

Log in

Pristanic Acid Provokes Lipid, Protein, and DNA Oxidative Damage and Reduces the Antioxidant Defenses in Cerebellum of Young Rats

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and α-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced α-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by α-tocopherol but not by the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The present findings may contribute to clarify the pathogenesis of the cerebellar alterations observed in patients affected by ZS and some peroxisomal disorders in which Prist is accumulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferdinandusse S, Finckh B, de Hingh Y, Stroomer L, Denis S, Kohlschütter A, et al. Evidence for increased oxidative stress in peroxisomal D-bifunctional protein deficiency. Mol Genet Metab. 2003;79(4):281–7.

    Article  CAS  PubMed  Google Scholar 

  2. Ferdinandusse S, Denis S, Clayton P, Graham A, Rees J, Allen J, et al. Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet. 2000;24(2):188–91.

    Article  CAS  PubMed  Google Scholar 

  3. Steinberg S, Chen L, Wei L, Moser A, Moser H, Cutting G, et al. The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab. 2004;83(3):252–63.

    Article  CAS  PubMed  Google Scholar 

  4. Verhoeven N, Jakobs C. Human metabolism of phytanic acid and pristanic acid. Prog Lipid Res. 2001;40(6):453–66.

    Article  CAS  PubMed  Google Scholar 

  5. Scriver C, Beaudet A, Sly W, Valle D. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  6. Ferdinandusse S, Rusch H, van Lint A, Dacremont G, Wanders R, Vreken P. Stereochemistry of the peroxisomal branched-chain fatty acid alpha- and beta-oxidation systems in patients suffering from different peroxisomal disorders. J Lipid Res. 2002;43(3):438–44.

    CAS  PubMed  Google Scholar 

  7. Fedick A, Jalas C, Treff N. A deleterious mutation in the PEX2 gene causes Zellweger syndrome in individuals of Ashkenazi Jewish descent. Clin Genet. 2013.

  8. Weller S, Rosewich H, Gärtner J. Cerebral MRI as a valuable diagnostic tool in Zellweger spectrum patients. J Inherit Metab Dis. 2008;31(2):270–80.

    Article  CAS  PubMed  Google Scholar 

  9. Lee PR, Raymond GV. Child neurology: Zellweger syndrome. Neurology. 2013;80(20):e207–10.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Rafique M, Zia S, Rana MN, Mostafa OA. Zellweger syndrome—a lethal peroxisome biogenesis disorder. J Pediatr Endocrinol Metab. 2013;26(3–4):377–9.

    PubMed  Google Scholar 

  11. Rönicke S, Kruska N, Kahlert S, Reiser G. The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiol Dis. 2009;36(2):401–10.

    Article  PubMed  Google Scholar 

  12. Busanello EN, Viegas CM, Tonin AM, Grings M, Moura AP, de Oliveira AB, et al. Neurochemical evidence that pristanic acid impairs energy production and inhibits synaptic Na(+), K (+)-ATPase activity in brain of young rats. Neurochem Res. 2011.

  13. Busanello EN, Amaral AU, Tonin AM, Grings M, Moura AP, Eichler P, et al. Experimental evidence that pristanic acid disrupts mitochondrial homeostasis in brain of young rats. J Neurosci Res. 2012;90(3):597–605.

    Article  CAS  PubMed  Google Scholar 

  14. Leipnitz G, Amaral AU, Fernandes CG, Seminotti B, Zanatta A, Knebel LA, et al. Pristanic acid promotes oxidative stress in brain cortex of young rats: a possible pathophysiological mechanism for brain damage in peroxisomal disorders. Brain Res. 2011;1382:259–65.

    Article  CAS  PubMed  Google Scholar 

  15. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA. Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys. 2001;388(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  16. Knebel LA, Zanatta A, Tonin AM, Grings M, Alvorcem Led M, Wajner M, et al. 2-Methylbutyrylglycine induces lipid oxidative damage and decreases the antioxidant defenses in rat brain. Brain Res. 2012;1478:74–82.

    Article  CAS  PubMed  Google Scholar 

  17. Ribas GS, Manfredini V, de Marco MG, Vieira RB, Wayhs CY, Vanzin CS, et al. Prevention by L-carnitine of DNA damage induced by propionic and L-methylmalonic acids in human peripheral leukocytes in vitro. Mutat Res. 2010;702(1):123–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenthal R, Hamud F, Fiskum G, Varghese P, Sharpe S. Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab. 1987;7(6):752–8.

    Article  CAS  PubMed  Google Scholar 

  19. Facci L, Skaper SD. Culture of rat cerebellar granule neurons and application to identify neuroprotective agents. Methods Mol Biol. 2012;846:23–37.

    Article  CAS  PubMed  Google Scholar 

  20. Yagi K. Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods Mol Biol. 1998;108:107–10.

    CAS  PubMed  Google Scholar 

  21. Leipnitz G, Seminotti B, Haubrich J, Dalcin MB, Dalcin KB, Solano A, et al. Evidence that 3-hydroxy-3-methylglutaric acid promotes lipid and protein oxidative damage and reduces the nonenzymatic antioxidant defenses in rat cerebral cortex. J Neurosci Res. 2008;86(3):683–93.

    Article  CAS  PubMed  Google Scholar 

  22. Schuck PF, Ceolato PC, Ferreira GC, Tonin A, Leipnitz G, Dutra-Filho CS, et al. Oxidative stress induction by cis-4-decenoic acid: relevance for MCAD deficiency. Free Radic Res. 2007;41(11):1261–72.

    Article  CAS  PubMed  Google Scholar 

  23. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–63.

    Article  CAS  PubMed  Google Scholar 

  24. Aksenov MY, Markesbery WR. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer's disease. Neurosci Lett. 2001;302(2–3):141–5.

    Article  CAS  PubMed  Google Scholar 

  25. Morrison JF. The activation of aconitase by ferrous ions and reducing agents. Biochem J. 1954;58(4):685–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lai J, Cooper A. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem. 1986;47(5):1376–86.

    Article  CAS  PubMed  Google Scholar 

  27. Tretter L, Adam-Vizi V. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci. 2004;24(36):7771–8.

    Article  CAS  PubMed  Google Scholar 

  28. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.

    Article  CAS  PubMed  Google Scholar 

  29. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206–21.

    Article  CAS  PubMed  Google Scholar 

  30. Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, et al. Recommendations for conducting the in vivo alkaline Comet assay. 4th International Comet Assay Workshop. Mutagenesis. 2003;18(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  31. Nadin SB, Vargas-Roig LM, Ciocca DR. A silver staining method for single-cell gel assay. J Histochem Cytochem. 2001;49(9):1183–6.

    Article  CAS  PubMed  Google Scholar 

  32. Schmid W. The micronucleus test. Mutat Res. 1975;31(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  33. Browne RW, Armstrong D. Reduced glutathione and glutathione disulfide. Methods Mol Biol. 1998;108:347–52.

    CAS  PubMed  Google Scholar 

  34. Quincozes-Santos A, Bobermin LD, Souza DG, Bellaver B, Gonçalves CA, Souza DO. Guanosine protects C6 astroglial cells against azide-induced oxidative damage: a putative role of heme oxygenase 1. J Neurochem. 2014;130(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  PubMed  Google Scholar 

  36. Styskal J, Van Remmen H, Richardson A, Salmon AB. Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol Med. 2012;52(1):46–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1–2):23–38.

    Article  CAS  PubMed  Google Scholar 

  38. Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med. 2002;32(9):790–6.

    Article  CAS  PubMed  Google Scholar 

  39. Liang LP, Ho YS, Patel M. Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience. 2000;101(3):563–70.

    Article  CAS  PubMed  Google Scholar 

  40. Tretter L, Liktor B, Adam-Vizi V. Dual effect of pyruvate in isolated nerve terminals: generation of reactive oxygen species and protection of aconitase. Neurochem Res. 2005;30(10):1331–8.

    Article  CAS  PubMed  Google Scholar 

  41. Starkov AA. An update on the role of mitochondrial α-ketoglutarate dehydrogenase in oxidative stress. Mol Cell Neurosci. 2013;55:13–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Gardner PR, Raineri I, Epstein LB, White CW. Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem. 1995;270(22):13399–405.

    Article  CAS  PubMed  Google Scholar 

  43. Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011;51(5):1000–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Reiter RJ, Guerrero JM, Escames G, Pappolla MA, Acuña-Castroviejo D. Prophylactic actions of melatonin in oxidative neurotoxicity. Ann N Y Acad Sci. 1997;825:70–8.

    Article  CAS  PubMed  Google Scholar 

  45. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97(6):1634–58.

    Article  CAS  PubMed  Google Scholar 

  46. Speit G, Hartmann A. The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis. 1995;10(6):555–9.

    Article  CAS  PubMed  Google Scholar 

  47. D'Errico M, Parlanti E, Dogliotti E. Mechanism of oxidative DNA damage repair and relevance to human pathology. Mutat Res. 2008;659(1–2):4–14.

    Article  PubMed  Google Scholar 

  48. Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10(5):891–937.

    Article  CAS  PubMed  Google Scholar 

  49. Markesbery WR, Lovell MA. DNA oxidation in Alzheimer's disease. Antioxid Redox Signal. 2006;8(11–12):2039–45.

    Article  CAS  PubMed  Google Scholar 

  50. Fenech M, Holland N, Chang WP, Zeiger E, Bonassi S. The HUman MicroNucleus Project—an international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans. Mutat Res. 1999;428(1–2):271–83.

    Article  CAS  PubMed  Google Scholar 

  51. Fenech M. The in vitro micronucleus technique. Mutat Res. 2000;455(1–2):81–95.

    Article  CAS  PubMed  Google Scholar 

  52. Fenech M. In vitro micronucleus technique to predict chemosensitivity. Methods Mol Med. 2005;111:3–32.

    PubMed  Google Scholar 

  53. Bergamini CM, Gambetti S, Dondi A, Cervellati C. Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des. 2004;10(14):1611–26.

    Article  CAS  PubMed  Google Scholar 

  54. Lee HC, Wei YH. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood). 2007;232(5):592–606.

    CAS  Google Scholar 

  55. Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol. 2001;54(3):176–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hansen RE, Winther JR. An introduction to methods for analyzing thiols and disulfides: reactions, reagents, and practical considerations. Anal Biochem. 2009;394(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  57. Thomas SR, Neuzil J, Mohr D, Stocker R. Coantioxidants make alpha-tocopherol an efficient antioxidant for low-density lipoprotein. Am J Clin Nutr. 1995;62(6 Suppl):1357S–64S.

    CAS  PubMed  Google Scholar 

  58. Requejo R, Chouchani ET, Hurd TR, Menger KE, Hampton MB, Murphy MP. Measuring mitochondrial protein thiol redox state. Methods Enzymol. 2010;474:123–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of CNPq, PROPESq/UFRGS, FAPERGS, PRONEX, FINEP Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00, Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN), and Programa Nacional de Pós-Doutorado CAPES.

Conflict of Interest

The authors declare that there are no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busanello, E.N.B., Lobato, V.G.A., Zanatta, Â. et al. Pristanic Acid Provokes Lipid, Protein, and DNA Oxidative Damage and Reduces the Antioxidant Defenses in Cerebellum of Young Rats. Cerebellum 13, 751–759 (2014). https://doi.org/10.1007/s12311-014-0593-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0593-0

Keywords

Navigation