Skip to main content

Advertisement

Log in

Nerve Growth Factor-Mediated Regulation of Low Density Lipoprotein Receptor-Related Protein Promoter Activation

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The mechanisms by which nerve growth factor (NGF) increases the level of low density lipoprotein receptor-related protein (LRP1) are not known. Administration of nitric oxide synthase (NOS) inhibitors modulates several of the neurotrophic actions of NGF, including TrkA signalling pathway activation, increases in gene expression and neurite outgrowth. The present study investigated whether NGF regulates the transcription of LRP1 as well as the role of NO and the individual TrkA signalling pathways in this action of NGF. PC12 cells were transfected with luciferase reporter constructs containing various sized fragments of the LRP1 promoter and treated with NGF (50 ng/mL) to establish whether NGF altered LRP transcription. NGF significantly increased luciferase activity in all LRP1 promoter construct-transfected cells with the NGF-responsive region of the promoter identified to be present in the first 1000 bp. The non-selective NOS inhibitor Nω-nitro-l-arginine methylester (l-NAME; 20 mM) had no effect on the NGF-mediated increase in luciferase activity, while the inducible NOS selective inhibitor s-methylisothiourea (S-MIU; 2 mM) attenuated the NGF-induced activation of the LRP1 promoter. Pretreatment of PC12 cells with 10 μM bisindolylmaleimide 1 (BIS-1) prevented the NGF-mediated increase in LRP1 promoter activation while 50 μM U0126 partially inhibited this response. In combination with S-MIU, all of the TrkA signalling pathway inhibitors blocked the ability of NGF to increase LRP1 transcription. These data suggest the NGF-mediated increase in LRP1 levels occurs, at least in part, at the level of transcription and that NO and the TrkA signalling pathways cooperate in the modulation of LRP1 transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

α2M:

Alpha 2 macroglobulin

ANOVA:

Analysis of variance

AP-1:

Activator protein 1

APP:

Amyloid precursor protein

ApoE:

Apolipoprotein E

BIS-1:

Bisindolylmaleimide 1

ChAT:

Choline acetyltransferase

ECL:

Enhanced chemiluminescence

LDL:

Low density lipoprotein

l-NAME:

Nω-nitro-l-arginine methylester

LRP1:

Low density lipoprotein receptor-related protein

NGF:

Nerve growth factor

RIPA:

Radioimmunoprecipitation assay

SDS:

Sodium dodecyl sulphate

S-MIU:

Methylisothiourea

TBS:

Tris-buffered saline

References

  • An J, Zhang C, Polavarapu R, Zhang X, Zhang X, Yepes M (2008) Tissue-type plasminogen activator and the low-density lipoprotein receptor-related protein induce Akt phosphorylation in the ischemic brain. Blood 112:2787–2794

    Article  PubMed  CAS  Google Scholar 

  • Bai S, Ghoshal K, Datta J, Majumder S, Yoon SO, Jacob ST (2005) DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol Cell Biol 25:751–766

    Article  PubMed  CAS  Google Scholar 

  • Bapat S, Verkleij A, Post JA (2001) Peroxynitrite activates mitogen-activated protein kinase (MAPK) via a MEK-independent pathway: a role for protein kinase C. FEBS Lett 499:21–26

    Article  PubMed  CAS  Google Scholar 

  • Baskey JC, Kalisch BE, Davis WL, Meakin SO, Rylett RJ (2002) PC12nnr5 cells expressing TrkA receptors undergo morphological but not cholinergic phenotypic differentiation in response to nerve growth factor. J Neurochem 80:501–511

    Article  PubMed  CAS  Google Scholar 

  • Beffert U, Morfini G, Bock HH, Reyna H, Brady ST, Herz J (2002) Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3beta. J Biol Chem 277:49958–49964

    Article  PubMed  CAS  Google Scholar 

  • Billon N, Carlisi D, Datto MB, van Grunsven LA, Watt A, Wang XF, Rudkin BB (1999) Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene 18:2872–2882

    Article  PubMed  CAS  Google Scholar 

  • Binnington JC, Kalisch BE (2007) Nitric oxide synthase inhibitors modulate nerve growth factor-mediated regulation of amyloid precursor protein expression in PC12 cells. J Neurochem 101:422–433

    Article  PubMed  CAS  Google Scholar 

  • Boer R, Ulrich WR, Klein T, Mirau B, Haas S, Baur I (2000) The inhibitory potency and selectivity of arginine substrate site nitric-oxide synthase inhibitors is solely determined by their affinity toward the different isoenzymes. Mol Pharmacol 58:1026–1034

    PubMed  CAS  Google Scholar 

  • Boucher P, Liu P, Gotthardt M, Hiesberger T, Anderson RG, Herz J (2002) Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low density lipoprotein receptor-related protein in caveolae. J Biol Chem 277:15507–15513

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brodeur GM, Minturn JR, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V, Evans AE (2009) Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15:3244–3250

    Article  PubMed  CAS  Google Scholar 

  • Bu G, Maksymovitch EA, Nerbonne JM, Schwartz AL (1994) Expression and function of the low density lipoprotein receptor-related protein (LRP) in mammalian central neurons. J Biol Chem 269:18521–18528

    PubMed  CAS  Google Scholar 

  • Bu G, Sun Y, Schwartz AL, Holtzman DM (1998) Nerve growth factor induces rapid increases in functional cell surface low density lipoprotein receptor-related protein. J Biol Chem 273:13359–13365

    Article  PubMed  CAS  Google Scholar 

  • Cam JA, Zerbinatti CV, Li Y, Bu GT (2005) Rapid endocytosis of the low density lipoprotein receptor-related protein modulates cell surface distribution and processing of the beta-amyloid precursor protein. J Biol Chem 280:15464–15470

    Article  PubMed  CAS  Google Scholar 

  • Collerton D (1986) Cholinergic function and intellectual decline in Alzheimer’s disease. Neuroscience 19:1–28

    Article  PubMed  CAS  Google Scholar 

  • Cragg CL, MacKinnon JC, Kalisch BE (2012) Nitric oxide synthase inhibitors modulate nerve-growth-factor mediated activation of Akt. ISRN Cell Biol. doi:10.5302/2012/847974

    Google Scholar 

  • Fagan AM, Bu G, Sun Y, Daugherty A, Holtzman DM (1996) Apolipoprotein E-containing high density lipoprotein promotes neurite outgrowth and is a ligand for the low density lipoprotein receptor-related protein. J Biol Chem 271:30121–30125

    Article  PubMed  CAS  Google Scholar 

  • Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, Esiri MM, Neary D, Snowden JS, Wilcock GK (1985) Neurochemical studies of early-onset Alzheimer’s disease: possible influence of treatment. New Eng J Med 313:7–11

    Article  PubMed  CAS  Google Scholar 

  • Gaëta BA, Borthwick I, Stanley KK (1994) The 5′-flanking region of the alpha 2MR/LRP gene contains an enhancer-like cluster of Sp1 binding sites. Biochim Biophys Acta 1219:307–313

    Article  PubMed  Google Scholar 

  • Gaultier A, Simon G, Niessen S, Dix M, Takimoto S, Cravatt BF 3rd, Gonias SL (2010) LDL receptor-related protein 1 regulates the abundance of diverse cell-signalling proteins in the plasma membrane proteome. J Proteome Res 9:6689–6695. doi:10.1021/pr1008288

    Article  PubMed  CAS  Google Scholar 

  • Haby C, Lisovoski F, Aunis D, Zwiller J (1994) Stimulation of the cyclic GMP pathway by NO induces expression of the immediate early genes c-fos and junB in PC12 cells. J Neurochem 62:496–501

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Campenot RB, Vance DE, Vance JE (2007) Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J Neurosci 27:1933–1941

    Article  PubMed  CAS  Google Scholar 

  • Herz J, Beffert U (2000) Apolipoprotein E receptors: linking brain development and Alzheimer’s disease. Nat Rev Neurosci 1:51–58

    Article  PubMed  CAS  Google Scholar 

  • Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signalling receptor. J Clin Invest 108:779–784

    PubMed  CAS  Google Scholar 

  • Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK (1988) Surface location and high affinity for calcium of a 500-kD liver membrane protein closely related to the LDL-receptor suggests a physiological role as a lipoprotein receptor. EMBO J 7:4119–4127

    PubMed  CAS  Google Scholar 

  • Herz J, Kowal RC, Goldstein JL, Brown MS (1990) Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occurs in a trans-Golgi compartment. EMBO J 9:1769–1776

    PubMed  CAS  Google Scholar 

  • Hu L, Boesten LS, May P, Herz J, Bovenschen N, Huisman MV, Berbee JF, Havekes LM, van Vlijmen BJ, Tamsa JT (2006) Macrophage low-density lipoprotein receptor-related protein deficiency enhances atherosclerosis in ApoE/LDLR double knockout mice. Arterioscler Trhomb Vasc Bio 26:2710–2715

    Article  CAS  Google Scholar 

  • Ishiguro M, Imai Y, Kohsaka S (1995) Expression and distribution of low density lipoprotein receptor-related protein mRNA in the rat central nervous system. Brain Res Mol Brain Res 33:37–46

    Article  PubMed  CAS  Google Scholar 

  • Kalisch BE, Bock NA, Davis W, Rylett RJ (2002) Inhibitors of nitric oxide synthase attenuate nerve growth factor-mediated increases in choline acetyltransferase gene expression in PC12 cells. J Neurochem 81:624–635

    Article  PubMed  CAS  Google Scholar 

  • Kalisch BE, Demeris CS, Rylett RJ (2003) Modulation of nerve growth factor-induced activation of MAP kinase in PC12 cells by inhibitors of nitric oxide synthase. J Neurohem 87:1321–1332

    Article  CAS  Google Scholar 

  • Kang DE, Pietrzik CU, Baum L, Chevallier N, Merriam DE, Kounnas MZ, Wagner SL, Troncoso JC, Kawas CH, Katzman R, Koo EH (2000) Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway. J Clin Invest 106:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Kanterewicz BI, Knapp LT, Klann E (1998) Stimulation of p42 and p44 mitogen-activated protein kinases by reactive oxygen species and nitric oxide in hippocampus. J Neurochem 70:1009–1016

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Endo T, Abiko S, Ariga H, Matsumoto K (2008) Induction of truncated form of tenascin-X (XB-S) through dissociation of HDAC1 from SP-1/HDAC1 complex in response to hypoxic conditions. Exp Cell Res 314:2661–2673

    Article  PubMed  CAS  Google Scholar 

  • Khavandgar S, Homayoun H, Dehpour AR (2003) Mediation of nitric oxide in inhibitory effect of morphine against electroshock-induced convulsions in mice. Pharmacol Biochem Behav 74:795–801

    Article  PubMed  CAS  Google Scholar 

  • Knisely JM, Lee J, Bu G (2008) Measurement of receptor endocytosis and recycling. Methods Mol Biol 457:319–332

    Article  PubMed  CAS  Google Scholar 

  • Kumahara E, Ebihara T, Saffen D (1999) Nerve growth factor induces zif268 gene expression via MAPK-dependent and -independent pathways in PC12D cells. J Biochem 125:541–553

    Article  PubMed  CAS  Google Scholar 

  • Lee SB, Rhee SG (1995) Significance of PIP2 hydrolysis and regulation of phospholipase C isozymes. Curr Opin Cell Biol 7:183–189

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Park SS, Cho YH, Park K, Kim EJ, Jung KH, Kim SK, Kim WJ, Moon SK (2008) Activation of matrix metalloproteinase-9 by TNF-alpha in human urinary bladder cancer HT1376 cells: the role of MAP kinase signaling pathways. Oncol Rep 19:1007–1013

    PubMed  CAS  Google Scholar 

  • Liang M, Knox FG (1999) Nitric oxide activates PKCalpha and inhibits Na+-K+-ATPase in opossum kidney cells. Am J Physiol 277(6 Pt 2):F859–F865

    PubMed  CAS  Google Scholar 

  • Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK (2008) LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 88:887–918

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, Herz J, Muglia L, Bu G (2007) Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 56:66–78

    Article  PubMed  CAS  Google Scholar 

  • Lorent K, Overbergh L, Moechars D, DeStrooper B, Van Leuven F, Van den Berghe H (1995) Expression in mouse embryos and in adult mouse brain of three members of the amyloid precursor protein family, of the alpha-2-macrogobulin receptor/low density lipoprotein receptor-related protein and of its ligands apolipoprotein R, lipoprotein lipase, alpha-2-macrogobulin and the 40,000 molecular weight receptor-associated protein. Neuroscience 65:1009–1025

    Article  PubMed  CAS  Google Scholar 

  • Loukinova E, Ranganathan S, Kuznetsov S, Gorlatov N, Migliorinin MM, Loukinov D, Ulery PG, Mikhailenki I, Lawrence DA, Strickland DK (2002) PDGF-induced tyrosine phosphorylation of the LDL receptor-related protein (LRP): evidence for the integrated co-receptor function between LRP and the PDGF receptor. J Biol Chem 277:15499–15506

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon JC, Huether P, Kalisch BE (2012) Effects of nerve growth factor and nitric oxide synthase inhibitors on amyloid precursor protein mRNA levels and protein stability. Open Biochem J 6:31–39. doi:10.2174/1874091X012060100031

    Article  PubMed  CAS  Google Scholar 

  • Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Mantuano, E, Inoue G, Campana WM, Gonias SL (2009) Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway. Sci Signal 2:ra18. doi:10.1126/scisignal.2000188

  • Martin AM, Kuhlman C, Trossbach S, Jaeger S, Waldron E, Roebroek A, Luhmann HJ, Laatsch A, Weggen S, Lessmann V, Pietrzik CU (2008) The functional role of the second NPXY motif of the LRP1 beta-chain in tissue-type plasminogen activator-mediated activation of the N-methyl-d-aspartate receptors. J Biol Chem 283:12004–12013

    Article  PubMed  CAS  Google Scholar 

  • Milward EA, Papadopoulos R, Fuller SJ, Moir RD, Small D, Beyreuther K, Masters CL (1992) The amyloid protein precursor of Alzheimer’s disease is a mediator of the effects of nerve growth factor on neurite outgrowth. Neuron 9:129–137

    Article  PubMed  CAS  Google Scholar 

  • Morris BJ (1995) Stimulation of immediate early gene expression in striatal neurons by nitric oxide. J Biol Chem 270:24740–24744

    PubMed  CAS  Google Scholar 

  • Narita M, Bu G, Holtzman DM, Schwartz AL (1997) The low-density lipoprotein receptor-related protein, a multifunctional apolipoprotein E receptor, modulates hippocampal neurite development. J Neurochem 68:587–595

    Article  PubMed  CAS  Google Scholar 

  • Nathan BP, Jian Y, Wong GK, Shen F, Brewer GJ, Struble RG (2002) Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low-density lipoprotein receptor-related protein. Brain Res 928:96–105

    Article  PubMed  CAS  Google Scholar 

  • Olson L, Nordberg A, von Holst H, Bäckman L, Ebendal T, Alafuzoff I, Amberla K, Hartvig P, Herlitz A, Lilja A et al (1992) Nerve growth factor affects 11C-nicotine binding, blood flow, EEG and verbal episodic memory in an Alzheimer patient (case report). J Neural transm Park Dement Sect 4:79–95

    Article  CAS  Google Scholar 

  • Park KM, Yule DI, Bowers WJ (2009) Tumor necrosis factor-alpha-mediated regulation of the inositol 1,4,5-trisphosphate receptor promoter. J Biol Chem 284:27557–27566

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Mol Brain Res 1:53–62

    Google Scholar 

  • Peunova N, Enikolopov G (1995) Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature 375:68–73

    Article  PubMed  CAS  Google Scholar 

  • Pietrzik CU, Busse T, Merriam DE, Weggen S, Koo EH (2002) The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J 21:5691–5700

    Article  PubMed  CAS  Google Scholar 

  • Pilz RB, Suhasini M, Idriss S, Meinkoth JL, Boss GR (1995) Nitric oxide and cGMP analogs activate transcription from AP-1-responsive promoters in mammalian cells. FASEB J 9:552–558

    PubMed  CAS  Google Scholar 

  • Postuma RB, Martins RN, Cappai R, Bevreuther K, Masters CL, Strickland DK, Mok SS, Small DH (1998) Effects of the amyloid protein precursor of Alzheimer’s disease and other ligands of the LDL receptor-related protein on neurite outgrowth from sympathetic neurons in culture. FEBS Lett 428:13–16

    Article  PubMed  CAS  Google Scholar 

  • Qiu Z, Strickland DK, Hyman BT, Rebeck GW (1999) Alpha2-macroglonbulin enhances the clearance of endogenous soluble beta-amyloid peptide via low-density lipoprotein receptor-related protein in cortical neurons. J Neurochem 73:1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Qiu Z, Hyman BT, Rebeck GW (2004) Apolipoprotein E receptors mediate neurite outgrowth through activation of p44/42 mitogen-activated protein kinase in primary neurons. J Biol Chem 279:34948–34956

    Article  PubMed  CAS  Google Scholar 

  • Rebeck GW, Harr SD, Strickland DK, Hyman BT (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobuline receptor/low-density-lipoprotein receptor-related protein. Ann Neurol 37:211–217

    Article  PubMed  CAS  Google Scholar 

  • Seiger A, Nordberg A, von Holst H, Bäckman L, Ebendal T, Alafuzoff I, Amberla K, Hartvig P, Herlitz A, Lilja A et al (1993) Intracranial infusion of purified nerve growth factor to an Alzheimer patient: the first attempt of a possible future treatment strategy. Behav Brain Res 57:255–261

    Article  PubMed  CAS  Google Scholar 

  • Sellak H, Yang X, Cao X, Cornwell T, Soff GA, Lincoln T (2002) Sp1 transcription factor as a molecular target for nitric oxide- and cyclic nucleotide-mediated suppression of cGMP-dependent protein kinase-Ialpha expression in vascular smooth muscle cells. Circ Res 90:405–412

    Article  PubMed  CAS  Google Scholar 

  • Sheehy AM, Phung YT, Riemer RK, Black SM (1997) Growth factor induction of nitric oxide synthase in rat pheochromocytoma cells. Brain Res Mol Brain Res 52:71–77

    Article  PubMed  CAS  Google Scholar 

  • Smith AR, Hagen TM (2003) Vascular endothelial dysfunction in aging: loss of Akt-dependent endothelial nitric oxide synthase phosphorylation and partial restoration by (R)-alpha-lipoic acid. Biochem Soc Trans 31(Pt 6):1447–1449

    Article  PubMed  CAS  Google Scholar 

  • Southan GJ, Szabo C, Thiemermann C (1995) Isothioureas: potent inhibitors of nitric oxide synthases with variable isoform selectivity. Br J Pharmacol 114:510–516

    Article  PubMed  CAS  Google Scholar 

  • Strada O, Vyas S, Hirsch EC, Ruberg M, Brice A, Agid Y, Javoy-Agid F (1992) Decreased choline acetyltransferase mRNA expression in the nucleus basalis of Meynert in Alzheimer disease: an in situ hybridization study. Proc Natl Acad Sci USA 89:9549–9553

    Article  PubMed  CAS  Google Scholar 

  • Strickland DK, Kounnas MZ, Argraves WS (1995) LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J 9:890–898

    PubMed  CAS  Google Scholar 

  • Ulery PG, Beers J, Mikhailenko I, Tanzi RE, Rebeck GW, Hyman BT, Strickland DK (2000) Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer’s disease. J Biol Chem 275:7410–7415

    Article  PubMed  CAS  Google Scholar 

  • Van der Zee A, Stas L, Hilleker C, van Leuven F, van Dijk KW, Havekes L, Frants R, Hofker M (1994) Genomic cloning of the mouse LDL receptor related protein/alpha 2-macroglobulin receptor gene. Genomics 23:256–259

    Article  PubMed  Google Scholar 

  • Van Uden E, Kang DE, Koo EH, Masliah E (2000) LDL receptor-related protein (LRP) in Alzheimer’s disease: towards a unified theory of pathogenesis. Micros Res Tech 50:268–272

    Article  Google Scholar 

  • Whitehouse PJ, Struble RG, Hedreen JC, Clark AW, White CL, Parhad IM, Price DL (1983) Neuroanatomical evidence for a cholinergic deficit in Alzheimer’s disease. Psychopharmacol Bull 19:437–440

    PubMed  CAS  Google Scholar 

  • Winick-Ng W, Leri F, Kalisch BE (2012) Nitric oxide and histone deacetylases modulate cocaine-induced mu-opioid receptor levels in PC12 cells. BMC Pharmacol 18:11

    Google Scholar 

  • Wolf BB, Lopes MBS, VandenBerg SR, Gonias SL (1992) Characterization and immunohistochemical localization of α2-macroglobulin receptor (low-density lipoprotein receptor-related protein) in human brain. Am J Pathol 141:37–42

    PubMed  CAS  Google Scholar 

  • Wooten MW, Seibenhener ML, Zhou G, Vandenplas ML, Tan TH (1999) Overexpression of atypical PKC in PC12 cells enhances NGF-responsiveness and survival through an NF-kappaB dependent pathway. Cell Death Differ 6:753–764

    Article  PubMed  CAS  Google Scholar 

  • Zerbinatti CV, Wozniak DF, Cirrito J, Cam JA, Osaka H, Bales KR, Zhuo M, Paul SM, Holtzman DM, Bu G (2004) Increased soluble amyloid-β peptide and memory deficits in amyloid model mice overexpression the low-density lipoprotein receptor related protein. Proc Natl Acad Sci USA 101:1075–1080

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Wang YZ, Kagan E, Bonner JC (2000) Peroxynitrite targets the epidermal growth factor receptor, Raf-1, and MEK independently to activate MAPK. J Biol Chem 275:22479–22486

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada to BEK and an Ontario Graduate Scholarship to TRG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina E. Kalisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grana, T.R., LaMarre, J. & Kalisch, B.E. Nerve Growth Factor-Mediated Regulation of Low Density Lipoprotein Receptor-Related Protein Promoter Activation. Cell Mol Neurobiol 33, 269–282 (2013). https://doi.org/10.1007/s10571-012-9894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9894-3

Keywords

Navigation