Skip to main content
Log in

High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

High-density lipoprotein (HDL) has previously been shown to promote angiogenesis. However, the mechanisms by which HDL enhances the formation of blood vessels remain to be defined. To address this, the effects of HDL on the proliferation, transwell migration and tube formation of human umbilical vein endothelial cells were investigated. By examining the abundance and phosphorylation (i.e., activation) of the vascular endothelial growth factor receptor VEGFR2 and modulating the activity of the sphingosine-1 phosphate receptors S1P1–3 and VEGFR2, we characterized mechanisms controlling angiogenic responses in response to HDL exposure. Here, we report that HDL dose-dependently increased endothelial proliferation, migration and tube formation. These events were in association with increased VEGFR2 abundance and rapid VEGFR2 phosphorylation at Tyr1054/Tyr1059 and Tyr1175 residues in response to HDL. Blockade of VEGFR2 activation by the VEGFR2 inhibitor SU1498 markedly abrogated the pro-angiogenic capacity of HDL. Moreover, the S1P3 inhibitor suramin prevented VEGFR2 expression and abolished endothelial migration and tube formation, while the S1P1 agonist CYM-5442 and the S1P2 inhibitor JTE-013 had no effect. Last, the role of S1P3 was further confirmed in regulation of S1P-induced endothelial proliferation, migration and tube formation via up-regulation and activation of VEGFR2. Together, these findings argue that HDL promotes angiogenesis via S1P3-dependent up-regulation and activation of VEGFR2 and also suggest that the S1P–S1P3–VEGFR2 signaling cascades as a novel target for HDL-modulating therapy implicated in vascular remodeling and functional recovery in atherosclerotic diseases such as myocardial infarction and ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kontush A (2014) HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res 103:341–349

    Article  CAS  PubMed  Google Scholar 

  2. Heywood SE, Richart AL, Henstridge DC, Alt K, Kiriazis H, Zammit C, Carey AL, Kammoun HL, Delbridge LM, Reddy M, Chen Y-C, Du X-J, Hagemeyer CE, Febbraio MA, Siebel AL, Kingwell BA (2017) High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med 9:eaam6084

    Article  PubMed  Google Scholar 

  3. Gadkar K, Lu J, Sahasranaman S, Davis J, Mazer NA, Ramanujan S (2016) Evaluation of HDL-modulating interventions for cardiovascular risk reduction using a systems pharmacology approach. J Lipid Res 57:46–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gilham D, Wasiak S, Tsujikawa LM, Halliday C, Norek K, Patel RG, Kulikowski E, Johansson J, Sweeney M, Wong NCW (2016) RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis 247:48–57

    Article  CAS  PubMed  Google Scholar 

  5. Remaley AT, Norata GD, Catapano AL (2014) Novel concepts in HDL pharmacology. Cardiovasc Res 103:423–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kratzer A, Giral H, Landmesser U (2014) High-density lipoproteins as modulators of endothelial cell functions: alterations in patients with coronary artery disease. Cardiovasc Res 103:350–361

    Article  CAS  PubMed  Google Scholar 

  7. Santos-Gallego CG, Badimon JJ, Rosenson RS (2014) Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am 43:913–947

    Article  PubMed  Google Scholar 

  8. Kimura T, Sato K, Malchinkhuu E, Tomura H, Tamama K, Kuwabara A, Murakami M, Okajima F (2003) High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler Thromb Vasc Biol 23:1283–1288

    Article  CAS  PubMed  Google Scholar 

  9. Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J (2007) Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 49:1015–1026

    Article  PubMed  Google Scholar 

  10. Tan JT, Ng MK, Bursill CA (2015) The role of high-density lipoproteins in the regulation of angiogenesis. Cardiovasc Res 106:184–193

    Article  CAS  PubMed  Google Scholar 

  11. Prosser HC, Tan JT, Dunn LL, Patel S, Vanags LZ, Bao S, Ng MKC, Bursill CA (2014) Multifunctional regulation of angiogenesis by high-density lipoproteins. Cardiovasc Res 101:145–154

    Article  CAS  PubMed  Google Scholar 

  12. Jin F, Hagemann N, Brockmeier U, Schafer ST, Zechariah A, Hermann DM (2013) LDL attenuates VEGF-induced angiogenesis via mechanisms involving VEGFR2 internalization and degradation following endosome-trans-Golgi network trafficking. Angiogenesis 16:625–637

    Article  CAS  PubMed  Google Scholar 

  13. Jin F, Hagemann N, Schafer ST, Brockmeier U, Zechariah A, Hermann DM (2013) SDF-1 restores angiogenesis synergistically with VEGF upon LDL exposure despite CXCR4 internalization and degradation. Cardiovasc Res 100:481–491

    Article  CAS  PubMed  Google Scholar 

  14. Yao G, Zhang Q, Doeppner TR, Niu F, Li Q, Yang Y, Kuckelkorn U, Hagemann N, Li W, Hermann DM, Dai Y, Zhou W, Jin F (2015) LDL suppresses angiogenesis through disruption of the HIF pathway via NF-kappaB inhibition which is reversed by the proteasome inhibitor BSc2118. Oncotarget 6:30251–30262

    PubMed Central  PubMed  Google Scholar 

  15. Zechariah A, ElAli A, Hagemann N, Jin F, Doeppner TR, Helfrich I, Mies G, Hermann DM (2013) Hyperlipidemia attenuates vascular endothelial growth factor-induced angiogenesis, impairs cerebral blood flow, and disturbs stroke recovery via decreased pericyte coverage of brain endothelial cells. Arterioscler Thromb Vasc Biol 33:1561–1567

    Article  CAS  PubMed  Google Scholar 

  16. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  CAS  PubMed  Google Scholar 

  17. Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, Burillo E, Michel JB, Levoye A, Martin-Ventura JL, Meilhac O (2013) HDL and endothelial protection. Br J Pharmacol 169:493–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Karliner JS (2013) Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta 1831:203–212

    Article  CAS  PubMed  Google Scholar 

  19. Kono M, Mi Y, Liu Y, Sasaki T, Allende ML, Wu YP, Yamashita T, Proia RL (2004) The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279:29367–29373

    Article  CAS  PubMed  Google Scholar 

  20. Tanimoto T, Jin ZG, Berk BC (2002) Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem 277:42997–43001

    Article  CAS  PubMed  Google Scholar 

  21. Bergelin N, Lof C, Balthasar S, Kalhori V, Tornquist K (2010) S1P1 and VEGFR-2 form a signaling complex with extracellularly regulated kinase 1/2 and protein kinase C-alpha regulating ML-1 thyroid carcinoma cell migration. Endocrinology 151:2994–3005

    CAS  PubMed  Google Scholar 

  22. Cheng Q, Ma S, Lin D, Mei Y, Gong H, Lei L, Chen Y, Zhao Y, Hu B, Wu Y, Yu X, Zhao L, Liu H (2015) The S1P1 receptor-selective agonist CYM-5442 reduces the severity of acute GVHD by inhibiting macrophage recruitment. Cell Mol Immunol 12:681–691

    Article  CAS  PubMed  Google Scholar 

  23. Gonzalez-Diez M, Rodriguez C, Badimon L, Martinez-Gonzalez J (2008) Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: effect of simvastatin. Thromb Haemost 100:119–126

    Article  CAS  PubMed  Google Scholar 

  24. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz M, Frej C, Holmer A, Guo LJ, Tran S, Dahlback B (2017) High-density lipoprotein-associated apolipoprotein M limits endothelial inflammation by delivering sphingosine-1-phosphate to the sphingosine-1-phosphate receptor 1. Arterioscler Thromb Vasc Biol 37:118–129

    Article  CAS  PubMed  Google Scholar 

  26. Narita M, Holtzman DM, Fagan AM, LaDu MJ, Yu L, Han X, Gross RW, Bu G, Schwartz AL (2002) Cellular catabolism of lipid poor apolipoprotein E via cell surface LDL receptor-related protein. J Biochem 132:743–749

    Article  CAS  PubMed  Google Scholar 

  27. Argraves KM, Argraves WS (2007) HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res 48:2325–2333

    Article  CAS  PubMed  Google Scholar 

  28. Luscher TF, Landmesser U, von Eckardstein A, Fogelman AM (2014) High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res 114:171–182

    Article  PubMed  Google Scholar 

  29. Gomaraschi M, Ossoli A, Vitali C, Calabresi L (2013) HDL and endothelial protection: examining evidence from HDL inherited disorders. Clin Lipidol 8:361–370

    Article  CAS  Google Scholar 

  30. Tuteja S, Rader DJ (2014) High-density lipoproteins in the prevention of cardiovascular disease: changing the paradigm. Clin Pharmacol Ther 96:48–56

    Article  CAS  PubMed  Google Scholar 

  31. Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 263:256–273

    Article  CAS  PubMed  Google Scholar 

  32. Poti F, Bot M, Costa S, Bergonzini V, Maines L, Varga G, Freise H, Robenek Simoni M, Nofer JR (2012) Sphingosine kinase inhibition exerts both pro- and anti-atherogenic effects in low-density lipoprotein receptor-deficient (LDL-R(-/-)) mice. Thromb Haemost 107:552–561

    Article  CAS  PubMed  Google Scholar 

  33. Ruiz M, Okada H, Dahlback B (2017) HDL-associated ApoM is anti-apoptotic by delivering sphingosine 1-phosphate to S1P1 & S1P3 receptors on vascular endothelium. Lipids Health Dis 16:36

    Article  PubMed Central  PubMed  Google Scholar 

  34. Castaing-Berthou A, Malet N, Radojkovic C, Cabou C, Gayral S, Martinez LO, Laffargue M (2017) PI3 Kbeta plays a key role in apolipoprotein A-I-induced endothelial cell proliferation through activation of the Ecto-F1-ATPase/P2Y1 receptors. Cell Physiol Biochem 42:579–593

    Article  CAS  PubMed  Google Scholar 

  35. Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RGW, Mendelsohn ME, Hobbs HH, Shau PW (2001) High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7:853–857

    Article  CAS  PubMed  Google Scholar 

  36. Sumi M, Sata M, Miura S, Rye KA, Toya N, Kanaoka Y, Yanaga K, Ohki T, Saku K, Nagai R (2007) Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27:813–818

    Article  CAS  PubMed  Google Scholar 

  37. Zhang QH, Zu XY, Cao RX, Liu JH, Mo ZC, Zeng Y, Li YB, Xiong SL, Liu X, Liao DF, Yi GH (2012) An involvement of SR-B1 mediated PI3K-Akt-eNOS signaling in HDL-induced cyclooxygenase 2 expression and prostacyclin production in endothelial cells. Biochem Biophys Res Commun 420:17–23

    Article  CAS  PubMed  Google Scholar 

  38. Miura S, Fujino M, Matsuo Y, Kawamura A, Tanigawa H, Nishikawa H, Saku K (2003) High density lipoprotein-induced angiogenesis requires the activation of Ras/MAP kinase in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 23:802–808

    Article  CAS  PubMed  Google Scholar 

  39. Tan JT, Prosser HC, Vanags LZ, Monger SA, Ng MK, Bursill CA (2014) High-density lipoproteins augment hypoxia-induced angiogenesis via regulation of post-translational modulation of hypoxia-inducible factor 1alpha. FASEB J 28:206–217

    Article  CAS  PubMed  Google Scholar 

  40. Tan JT, Prosser HC, Dunn LL, Vanags LZ, Ridiandries A, Tsatralis T, Leece L, Clayton ZE, Yuen SCG, Robertson S, Lam YT, Celermajer DS, Ng MKC (2016) High-density lipoproteins rescue diabetes-impaired angiogenesis via scavenger receptor class B type I. Diabetes 65:3091–3103

    Article  CAS  PubMed  Google Scholar 

  41. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  42. Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, Seedorf U, Assmann G (2001) Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem 276:34480–34485

    Article  CAS  PubMed  Google Scholar 

  43. Galvani S, Sanson M, Blaho VA, Swendeman SL, Obinata H, Conger H, Dahlbäck B, Kono M, Proia RL, Smith JD, Hla T (2015) HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci Signal 8:79

    Article  Google Scholar 

  44. Endo A, Nagashima K, Kurose H, Mochizuki S, Matsuda M, Mochizuki N (2002) Sphingosine 1-phosphate induces membrane ruffling and increases motility of human umbilical vein endothelial cells via vascular endothelial growth factor receptor and CrkII. J Biol Chem 277:23747–23754

    Article  CAS  PubMed  Google Scholar 

  45. Paik JH, Chae S, Lee MJ, Thangada S, Hla T (2001) Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem 276:11830–11837

    Article  CAS  PubMed  Google Scholar 

  46. Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJ, Gödecke A, Ishii I, Kleuser B, Schäfers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T (2007) Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest 117:2506–2516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23:600–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, Ebarasi L, Nyström S, Rymo S, Chen LL, Pang M-F, Jin Y, Raschperger E, Roswall P, Schulte D, Benedito R, Larsson J, Hellström M, Fuxe J, Uhlén P, Adams R, Jakobsson L, Majumdar A, Vestweber D, Uv A, Betsholtz C (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23:587–599

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers 81471165 and 81670190 to F. Jin, Grant Number 81670189 to Y. Dai); Jilin Provincial Health and Family Planning Research Program (Grant Number 20142041 to F. Jin); German Research Foundation (HE3173/2-1 and HE3173/3-1 to D.M. Hermann); and Dr. Werner-Jackstädt Foundation, and Heinz-Nixdorf Foundation (to F. Jin). We thank Drs. Long Ye (Laboratory of Cancer Precision Medicine) and Yaru Zhang (Department of Neurology) at the First Hospital of Jilin University for their kind assistance with the experiments for revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengyan Jin, Yun Dai or Dirk M. Hermann.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2679 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F., Hagemann, N., Sun, L. et al. High-density lipoprotein (HDL) promotes angiogenesis via S1P3-dependent VEGFR2 activation. Angiogenesis 21, 381–394 (2018). https://doi.org/10.1007/s10456-018-9603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-018-9603-z

Keywords

Navigation