Skip to main content
Log in

The impact of antibiotics on bacterial cellulose in vivo

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study investigated how antibiotics, to which Gluconacetobacter hansenii is naturally resistant, impact cellulose crystallinity, allomorph, aggregation into bundles and layers, cellulose yield, and cell morphology. G. hansenii was exposed to 100 μg/mL ampicillin, chloramphenicol, and kanamycin for 7 days, and cellulose structure was analyzed using scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Biomass and cellulose weights were also assessed. Ampicillin increased bundle thickness, and the bundles also showed nodular deposits indicative of non-cellulosic exopolysaccharide deposition. Ampicillin also yielded the lowest amount of cellulose per gram of biomass (p < 0.01) and induced significant filamentation behavior. Chloramphenicol inhibited biomass production (p < 0.01), increased the I-α allomorph content (p < 0.01), and also induced filamentation, though not as profusely as ampicillin. We hypothesize that defects in the peptidoglycan layer and in protein production lowered cellulose yield and promoted cells to undergo filamentation as a survival tactic. Additionally, we hypothesize that antibiotic stress caused additional exopolysaccharides to be produced and that they likely enhanced glucan chain aggregation into higher-order structures. Our findings have significant implications for downstream applications such as genetically engineering G. hansenii to produce bacterial cellulose with modified properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdel-Sayed S (1987) Transport of chloramphenicol into sensitive strains of Escherichia coli and Pseudomonas aeruginosa. J Antimicrob Chemother 19:7–20. doi:10.1093/jac/19.1.7

    Article  CAS  Google Scholar 

  • Abe K, Sugiyama J, Itoh T, Ishihara M, Yamanaka S (1998) Crystalline features of bacterial cellulose altered by chemical agents during biosynthesis. Wood Res Bull Wood Res Inst Kyoto Univ 85:66–67

    CAS  Google Scholar 

  • Battad-Bernardo E, McCrindle SL, Couperwhite I, Neilan BA (2004) Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey. FEMS Microbiol Lett 231:253–260. doi:10.1016/S0378-1097(04)00007-2

    Article  CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem 42:471–506. doi:10.1146/annurev.bi.42.070173.002351

    Article  CAS  Google Scholar 

  • Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci USA 77:6678–6682

    Article  CAS  Google Scholar 

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  CAS  Google Scholar 

  • Bos J, Zhang Q, Vyawahare S, Rogers E, Rosenberg SM, Austin RH (2015) Emergence of antibiotic resistance from multinucleated bacterial filaments. Proc Natl Acad Sci USA 112:178–183. doi:10.1073/pnas.1420702111

    Article  CAS  Google Scholar 

  • Brown MR (1996) The biosynthesis of cellulose. J Pure Appl Chem 33:1345–1373

    Google Scholar 

  • Chen K, Sun GW, Chua KL, Gan Y (2005) Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob Agents Chemother 49:1002–1009. doi:10.1128/AAC.49.3.1002-1009.2005

    Article  CAS  Google Scholar 

  • Cold Spring Harbor (2006) LB (Luria-Bertani) liquid medium. Cold Spring Harb Protoc. doi:10.1101/pdb.rec8141

    Google Scholar 

  • Crosby HA, Bion JF, Penns CW, Elliott TSJ (2016) Antibiotic-induced release of endotoxin from bacteria in vitro. J Med Microbiol 40:23–30

    Article  Google Scholar 

  • de Pedro MA, Höltje JV, Schwarz H (2002) Fast lysis of Escherichia coli filament cells requires differentiation of potential division sites. Microbiology 148:79–86

    Article  Google Scholar 

  • Deng Y, Nagachar N, Xiao C, Tien M, Kao TH (2013) Identification and characterization of non-cellulose-producing mutants of Gluconacetobacter hansenii generated by Tn5 transposon mutagenesis. J Bacteriol 195:5072–5083. doi:10.1128/JB.00767-13

    Article  CAS  Google Scholar 

  • Deng Y, Nagachar N, Fang L, Luan X, Catchmark JM, Tien M, Kao TH (2015) Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity. PLoS ONE 10:1–18. doi:10.1371/journal.pone.0119504

    Google Scholar 

  • Doi Y, Arakawa Y (2007) 16S Ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 45:88–94. doi:10.1086/518605

    Article  CAS  Google Scholar 

  • Dong H, Strawhecker KE, Snyder JF et al (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495. doi:10.1016/j.carbpol.2011.11.015

    Article  CAS  Google Scholar 

  • Ehrlich J, Bartz QR, Smith RM, Joslyn DA, Burkholder PR (1947) Chloromycetin, a new antibiotic from a soil actinomycete. Science 106:417. doi:10.1126/science.106.2757.417

    Article  CAS  Google Scholar 

  • Fang L, Catchmark J (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose formation. Biomacromolecules. doi:10.1007/s10570-014-0443-8

    Google Scholar 

  • Fang L, Catchmark JM (2015) Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydr Polym 115:663–669. doi:10.1016/j.carbpol.2014.09.028

    Article  CAS  Google Scholar 

  • Fernández M, Conde S, de la Torre J, Molina-Santiago C, Ramos JL, Duque E (2012) Mechanisms of resistance to chloramphenicol in Pseudomonas putida KT2440. Antimicrob Agents Chemother 56:1001–1009. doi:10.1128/AAC.05398-11

    Article  Google Scholar 

  • Florea M, Reeve B, Abbott J, Freemont PS, Ellis T (2016) Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582. Sci Rep 6:23635. doi:10.1038/srep23635

    Article  CAS  Google Scholar 

  • Goss WA, Deitz WH, Cook TM (1964) Mechanism of action of nalidixic acid on Escherichia coli. J Bacteriol 88:1112–1118

    CAS  Google Scholar 

  • Gould IM, MacKenzie FM (1997) The response of Enterobacteriaceae to β-lactam antibiotics–’round forms, filaments and the root of all evil’. J Antimicrob Chemother 40:495–499. doi:10.5694/mja13.10499

    Article  CAS  Google Scholar 

  • Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym 88:547–557. doi:10.1016/j.carbpol.2011.12.040

    Article  CAS  Google Scholar 

  • Haigler CH, Brown RM, Benziman M (1980) Calcofluor white ST Alters the in vivo assembly of cellulose microfibrils. Science 210:903–906

    Article  CAS  Google Scholar 

  • Harvey RJ, Koch AL (1980) How partially inhibitory concentrations of chloramphenicol affect the growth of Escherichia coli. Antimicrob Agents Chemother 18:323–337. doi:10.1128/AAC.18.2.323

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352. doi:10.1042/bj0580345

    Article  CAS  Google Scholar 

  • Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5:201–213. doi:10.1023/A:1009233323237

    Article  CAS  Google Scholar 

  • Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11:1727–1734. doi:10.1021/bm100060v

    Article  CAS  Google Scholar 

  • Iyer PR, Geib SM, Catchmark J, Kao TH, Tien M (2010) Genome sequence of a cellulose-producing bacterium, Gluconacetobacter hansenii ATCC 23769. J Bacteriol 192:4256–4257. doi:10.1128/JB.00588-10

    Article  CAS  Google Scholar 

  • James CE, Mahendran KR, Molitor A, Bolla JM, Bessonov AN, Winterhalter M, Pagès JM (2009) How β-lactam antibiotics enter bacteria: a dialogue with the porins. PLoS ONE 4:10–13. doi:10.1371/journal.pone.0005453

    Google Scholar 

  • Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162–168. doi:10.1038/nrmicro1820

    Article  CAS  Google Scholar 

  • Kawano S, Tajima K, Uemori Y (2002) Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res 9:149–156

    Article  CAS  Google Scholar 

  • Kawano S, Tajima K, Kono H, Numata Y, Yamashita H, Satoh Y, Munekata M (2008) Regulation of endoglucanase gene (cmcax) expression in Acetobacter xylinum. J Biosci Bioeng 106:88–94. doi:10.1263/jbb.106.88

    Article  CAS  Google Scholar 

  • Kjeldsen TSB, Sommer MOA, Olsen JE (2015) Extended spectrum β-lactamase-producing Escherichia coli forms filaments as an initial response to cefotaxime treatment. BMC Microbiol 15:63. doi:10.1186/s12866-015-0399-3

    Article  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by Bactericidal antibiotics. Cell 130:797–810. doi:10.1016/j.cell.2007.06.049

    Article  CAS  Google Scholar 

  • Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ (2009) Mistranslation of membrane proteins and two-component sytem activation trigger aminoglycoside-mediated oxidative stress and cell death. NIH Public Access 135:679–690. doi:10.1016/j.cell.2008.09.038

    Google Scholar 

  • Kotra LP, Haddad J, Mobashery S (2000) Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimirob Agents Chemother 44:3249–3256. doi:10.1128/AAC.44.12.3249-3256.2000

    Article  CAS  Google Scholar 

  • Lee CM, Gu J, Kafle K, Catchmark JM, Kim SH (2015) Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: pellicle formation, post-synthesis aggregation and fiber density. Carbohydr Polym 133:270–276. doi:10.1016/j.carbpol.2015.06.091

    Article  CAS  Google Scholar 

  • Lorian V (1975) Some effects of subinhibitory concentrations of antibiotics on bacteria. Bull N Y Acad Med 51:1046–1055

    CAS  Google Scholar 

  • Minitab (2014) One-way ANOVA. Minitab, Inc. http://support.minitab.com/en-us/minitab/17/assistant_one_way_anova.pdf. Accessed 17 June 2016

  • Moonmangmee S, Toyama H, Adachi O, Theeragool G, Lotong N, Matsushit K (2002) Purification and characterization of a novel polysaccharide involved in the pellicle produced by a thermotolerant Acetobacter strain. Biosci Biotechnol Biochem 66:777–783. doi:10.1271/bbb.66.777

    Article  CAS  Google Scholar 

  • Nakai T, Nishiyama Y, Kuga S, Sugano Y, Shoda M (2002) ORF2 gene involves in the construction of high-order structure of bacterial cellulose. Biochem Biophys Res Commun 295:458–462

    Article  CAS  Google Scholar 

  • Nakai T, Sugano Y, Shoda M, Sakakibara H, Oiwa K, Tuzi S, Imai T, Sugiyama J, Takeuchi M, Yamauchi D, Mineyuki Y (2013) Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. J Bacteriol 195:958–964. doi:10.1128/JB.01473-12

    Article  CAS  Google Scholar 

  • Nobles DR, Brown RM (2008) Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose 15:691–701. doi:10.1007/s10570-008-9217-5

    Article  CAS  Google Scholar 

  • Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422. doi:10.1038/nrm2698

    Article  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  Google Scholar 

  • Sauvage E, Derouaux A, Fraipont C, Joris M, Herman R, Rocaboy M, Schloesser M, Dumas J, Kerff F, Nguyen-Distèche M, Charlier P (2014) Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS ONE 9:1–11. doi:10.1371/journal.pone.0098042

    Article  Google Scholar 

  • Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21. doi:10.1093/aob/mci155

    Article  CAS  Google Scholar 

  • Saxena IM, Kudlicka K, Okuda K, Brown RM (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735–5752

    Article  CAS  Google Scholar 

  • Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–821. doi:10.1038/35101544

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  • Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112:225–230. doi:10.1016/j.mycres.2007.08.021

    Article  CAS  Google Scholar 

  • Steel C, Wan Q, Xu XH (2004) Single live cell imaging of chromosomes in chloramphenicol-induced filamentous Pseudomonas aeruginosa. Biochemistry 43:175–182. doi:10.1021/bi035341e

    Article  CAS  Google Scholar 

  • Sunagawa N, Fujiwara T, Yoda T, Kawano S, Satoh Y, Yao M, Tajima K, Dairi T (2013) Cellulose complementing factor (Ccp) is a new member of the cellulose synthase complex (terminal complex) in Acetobacter xylinum. J Biosci Bioeng 115:607–612. doi:10.1016/j.jbiosc.2012.12.021

    Article  CAS  Google Scholar 

  • Szymańska-Chargot M, Cybulska J, Zdunek A (2011) Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR Spectroscopy. Sensors 11:5543–5560. doi:10.3390/s110605543

    Article  Google Scholar 

  • Uehara T, Dinh T, Bernhardt TG (2009) LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191:5094–5107. doi:10.1128/JB.00505-09

    Article  CAS  Google Scholar 

  • Valla S, Ertesvag H, Tonouchi N, Fjaervik E (2009) Bacterial cellulose production: biosynthesis and applications. In: Rehm BHA (ed) Microbial production of biopolymers and polymer precursors. Caister Academic Press, Norfolk, pp 43–77

    Google Scholar 

  • Wada M, Okano T (2001) Localization of I-α and I-β phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188. doi:10.1023/A:1013196220602

    Article  CAS  Google Scholar 

  • Waxman DJ, Strominger JL (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu Rev Biochem 52:825–869. doi:10.1146/annurev.bi.52.070183.004141

    Article  CAS  Google Scholar 

  • Whitney SEC, Wilson E, Webster J, Bacic A, Reid JS, Gidley MJ (2006) Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose. Am J Bot 93:1402–1414. doi:10.3732/ajb.93.10.1402

    Article  CAS  Google Scholar 

  • Yamanaka S, Sugiyama J (2000) Structural modification of bacterial cellulose. Cellulose 7:213–225. doi:10.1023/A:1009208022957

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Nicole Brown and Dr. Teh-hui Kao for their input on experimental design and on testing antibiotic stability during the 7-day bacterial growth period. Also, the authors thank Nichole Wonderling, Beth Jones, Gino Tambourine, Josh Stapleton, Max Wetherington, Trevor Clark, Julie Anderson, and Daniel Veghte for training on XRD, FTIR, and SEM equipment and for their advice on best practices for analyzing the data. This research was supported by the USDA Forest Service (Agreement No. 11-JV-11111129-121), the National Science Foundation Graduate Research Fellowship Program (Grant No. DGE1255832), and the Penn State College of Agricultural Sciences Graduate Student Competitive Grants Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Catchmark.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henning, A.L., Catchmark, J.M. The impact of antibiotics on bacterial cellulose in vivo. Cellulose 24, 1261–1285 (2017). https://doi.org/10.1007/s10570-016-1169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1169-6

Keywords

Navigation