Skip to main content
Log in

Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We report the transfer of cellulose synthesis genes (acsABΔC) from the heterotropic alpha proteobacterium, Gluconacetobacter xylinus strain ATCC 53582 to a photosynthetic microbe (Synechococcus leopoliensis strain UTCC 100). These genes were functionally expressed in this cyanobacterium, resulting in the production of non-crystalline cellulose. Although the cellulose lacks the structural integrity of the product synthesized by G. xylinus, the non-crystalline nature of the cyanobacterial cellulose makes it an ideal potential feedstock for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22:3–6

    Article  CAS  Google Scholar 

  • Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24:1–58

    Article  CAS  Google Scholar 

  • Blanton RL, Fuller D, Iranfar N, Grimson MJ, Loomis WF (2000) The cellulose synthase gene of Dictyostelium. PNAS 97:2391–2396

    Article  CAS  Google Scholar 

  • Boison G, Bothe H, Schmitz O (2000) Transcriptional analysis of hydrogenase genes in the cyanobacteria Anacystis nidulans and Anabaena variabilis monitored by RT-PCR. Curr Microbiol 40:315–321

    Article  CAS  Google Scholar 

  • Brown RM Jr (1985) John Innes Symposium. Cellulose microfibril assembly and orientation: Recent developments. J Cell Sci Suppl 2:13–32

    Google Scholar 

  • Brown RM Jr, Lin FC (1990) Multiribbon microbial cellulose. US Patent 4,954,439

  • Brown RM Jr, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: 1. Visualization of the site of synthesis and direct measurement of the in vivo process. PNAS 73:4565–4569

    Article  CAS  Google Scholar 

  • Bustos SA, Golden SS (1992) Light-regulated expression of the psbD gene family in Synechococcus sp. strain PCC 7942: Evidence for the role of duplicated psbD genes in cyanobacteria. Mol Gen Genet 232:221–230

    CAS  Google Scholar 

  • Castenholz RW, Waterbury JB (1989) Group I. Cyanobacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins Co, Baltimore

    Google Scholar 

  • Chen HP, Brown RM Jr (1996) Immunochemical studies of the cellulose synthase complex in Acetobacter xylinum. Cellulose 3:63–76

    Article  Google Scholar 

  • Chung CT, Miller RH (1993) Preparation and storage of competent Escherichia coli cells. In: Wu R (ed) Methods in enzymology, vol 218. Academic Press, New York

    Google Scholar 

  • Clerico CM, Ditty JL, Golden SS (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. In: Rosato E (ed) Methods in molecular biology, vol 362: Circadian rhythms: methods and protocols. Humana Press, Totowa, NJ

    Google Scholar 

  • Cogne G, Cornet JF, Gros JB (2005) Design, operation, and modeling of a membrane photobioreactor to study the growth of the Cyanobacterium Arthrospira platensis in space conditions. Biotechnol Prog 21:741–750

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S et al (2006) Microbial cellulose – the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  Google Scholar 

  • Deinema MH, Zevenhuizen LP (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch. Mikrobiol 78:42–51

    Article  CAS  Google Scholar 

  • Finnegan F, Sherratt D (1982) Plasmid ColE1 conjugal mobility: the nature of bom, a region required in cis for transfer. Mol Gen Genet 185:344–351

    Article  CAS  Google Scholar 

  • Hess K, Haller R, Katz JR (1928) Die Chemie der Zellulose und ihrer Begleiter. Akademische Verlagsgesellschaft m. b. H., Leipzig

  • Helenius G, Bäckdahl H, Bodin A et al (2006). In vivo biocompatibility of bacterial cellulose. Biomed Mater Res A 76:431–438

    Article  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Golden SS, Brusslan J, Haselkorn R (1987) Genetic engineering of the cyanobacterial chromosome. In: Wu R, Grossman L (eds) Methods in enzymology, vol 153. Academic Press, New York

    Google Scholar 

  • Kim SG, Choi A, Ahn CY, Park CS, Park YH, Oh HM et al (2005) Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett Appl Microbiol 40:190–194

    Article  CAS  Google Scholar 

  • Kimura S, Ohshima C, Hirose E et al (2001) Cellulose in the house of the appendicularian Oikopleura rufescens. Protoplasma 216:71–74

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 44:3358–3393

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lin FC, Brown RM Jr (1989) Purification of cellulose synthase from Acetobacter xylinum. In: Schuerch C (ed) Cellulose and wood -chemistry and technology. Wiley New York

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Mantiatis T, Fritsch E, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Moreno J, Vargas MA, Rodriguez H et al (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 20:191–7

    Article  CAS  Google Scholar 

  • Nobles DR Jr, Brown RM Jr (2007) Many paths up the mountain: tracking the evolution of cellulose biosynthesis. In: Brown RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, The Netherlands

    Google Scholar 

  • Nobles DR, Romanovicz DK, Brown RM Jr (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127:529–542

    Article  CAS  Google Scholar 

  • Norander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26:101–106

    Article  Google Scholar 

  • Norling B, Zak E, Andersson B, Pakrasi H (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 436:189–192

    Article  CAS  Google Scholar 

  • Okuda K, Li L, Kudlicka K et al (1993) ß-glucan synthesis in the cotton fiber. I. Identification of ß-1,4- and ß-1,3- glucans synthesized in vitro. Plant Physiol 101:1131–1142

    CAS  Google Scholar 

  • Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212

    Article  Google Scholar 

  • Römling U, Lünsdorf H (2004) Characterization of cellulose produced by Salmonella enterica serovar Typhimurium. Cellulose 11:413–418

    Article  Google Scholar 

  • Römling U, Gomelsky M, Galperin MY (2005) C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 5:629–639

    Article  Google Scholar 

  • Ross P, Weinhouse H, Aloni Y et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281

    Article  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  Google Scholar 

  • Saxena IM, Kudlicka K, Okuda K, Brown RM Jr (1994) Characterization of genes in the cellulose synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176:5735–5752

    CAS  Google Scholar 

  • Shah J, Brown RM Jr (2005) Towards electronic paper displays made form microbial cellulose. Appl Microbiol Biotechnol 66:352–355

    Article  CAS  Google Scholar 

  • Shramm M, Hestrin S (1954) Factors effecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. BioTechnology 1:784–791

    Article  CAS  Google Scholar 

  • Tabuchi M, Kobayashi K, Fugimoto M et al (2005) Bio-sensing on a chip with compact discs and nanofibers. Lab Chip 5:1412–1415

    Article  CAS  Google Scholar 

  • Tal R, Wong HC, Calhoon R et al (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180(17):4416–4425

    CAS  Google Scholar 

  • U.S. DOE (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, based on a workshop (Rockville, MD, December 7 to 9, 2005)

  • Vincent WF (2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria. Kluwer Academic, The Netherlands

    Google Scholar 

  • White DG, Brown RM Jr (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerch C (ed) Cellulose and Wood -Chemistry and Technology. Wiley, New York

    Google Scholar 

  • Wynn-Williams DD (2000) Cyanobacteria in deserts—life at the limit? In: Whitton BA, Potts M (eds) The ecology of Cyanobacteria. Kluwer Academic, The Netherlands

    Google Scholar 

  • Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777

    Article  CAS  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Susan Golden, Mark O’Brian, and Inder Saxena for the donation of plasmids and Jin Nakashima for assistance with Western analyses. This work was supported, in part, by the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Brown Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobles, D.R., Brown, R.M. Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose 15, 691–701 (2008). https://doi.org/10.1007/s10570-008-9217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9217-5

Keywords

Navigation