Skip to main content
Log in

Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Plastics with good flame retardant and gas barrier properties have been widely applied in the electrical industry. On the basis of the affinity between clay and cellulose, cellulose/montmorillonite (MMT) biobased plastics were constructed via a simple hot pressing of cellulose/MMT hydrogels prepared from a mixture of the cellulose solution and MMT suspension solution. The results of Fourier transform infrared spectra, X-ray diffraction and X-ray photoelectron spectroscopy (XPS) indicated that the MMT thin lamellae with about 4 nm thickness were uniformly dispersed in cellulose/MMT nanocomposite plastics. Moreover, transmission electron microscopy confirmed that an intercalated structure of MMT appeared in the cellulose/MMT. The experimental results revealed that MMT was well fixed in the cellulose matrix by the hydrogen bonding interaction and affinity between MMT and cellulose, leading to good miscibility. The tensile strength of the nanocomposite increased with an increase of MMT content. Moreover, the flame retardant of cellulose/MMT biobased plastic was improved with an increase of MMT content, while the biobased plastic with 20 wt% MMT achieved the highest limiting oxygen index of 29.3 %. Because of their good limiting oxygen index and gas barrier properties, these cellulose/MMT biobased plastics have potential applications in fields such as gas resistance, flame retardant, packaging material, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adoor SG, Sairam M, Manjeshwar LS, Raju K, Aminabhavi TM (2006) Sodium montmorillonite clay loaded novel mixed matrix membranes of poly (vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1, 4-dioxane. J Membr Sci 285:182–195

    Article  CAS  Google Scholar 

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    Article  CAS  Google Scholar 

  • Brindley G (1979) Formation and properties of clay–polymer complexes. Earth Sci Rev 15:295–296

    Article  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Polym Phys 44:3093–3101

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Camino G, Costa L, Casorati E, Bertelli G, Locatelli R (1988) The oxygen index method in fire retardance studies of polymeric materials. J Appl Polym Sci 35:1863–1876

    Article  CAS  Google Scholar 

  • Cerruti P, Ambrogi V, Postiglione A, Rychlý J, Matisová-Rychlá L, Carfagna C (2008) Morphological and thermal properties of cellulose–montmorillonite nanocomposites. Biomacromolecules 9:3004–3013

    Article  CAS  Google Scholar 

  • Chang Z, Guo F, Chen J, Zuo L, Yu J, Wang G (2007) Synergic flame retardancy mechanism of montmorillonite in the nano-sized hydroxyl aluminum oxalate/LDPE/EPDM system. Polymer 48:2892–2900

    Article  CAS  Google Scholar 

  • Chen P, Zhang L (2006) Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromolecules 7:1700–1706

    Article  CAS  Google Scholar 

  • Chow W, Ishak Z, Karger Kocsis J (2005) Atomic force microscopy study on blend morphology and clay dispersion in polyamide-6/polypropylene/organoclay systems. J Polym Sci Polym Phys 43:1198–1204

    Article  CAS  Google Scholar 

  • Chuang S, Hsu SL, Hsu C (2007) Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications. J Power Sources 168:172–177

    Article  CAS  Google Scholar 

  • Das P, Schipmann S, Malho J, Zhu B, Klemradt U, Walther A (2013) Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. ACS Appl Mater Interfaces 5:3738–3747

    Article  CAS  Google Scholar 

  • Domenech T, Zouari R, Vergnes B, Peuvrel-Disdier E (2014) Formation of fractal-like structure in organoclay-based polypropylene nanocomposites. Macromolecules 47:3417–3427

    Article  CAS  Google Scholar 

  • Fink H, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gawryla MD, van den Berg O, Weder C, Schiraldi DA (2009) Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. J Mater Chem 19:2118–2124

    Article  CAS  Google Scholar 

  • Golebiewski J, Rozanski A, Dzwonkowski J, Galeski A (2008) Low density polyethylene–montmorillonite nanocomposites for film blowing. Eur Polym J 44:270–286

    Article  CAS  Google Scholar 

  • Hartmann M, Kaplan D (1998) Biopolymers from renewable resources. Springer, Berlin

    Google Scholar 

  • Kaplan DL (1998) Introduction to biopolymers from renewable resources. Springer, Berlin

    Book  Google Scholar 

  • Kaya A, Ören AH (2005) Adsorption of zinc from aqueous solutions to bentonite. J Hazard Mater 125:183–189

    Article  CAS  Google Scholar 

  • Kiliaris P, Papaspyrides C (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  • Kim Y, Lee JS, Rhee CH, Kim HK, Chang H (2006) Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic–inorganic composite membranes. J Power Sources 162:180–185

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • La Rosa A, Recca A, Carter J, McGrail P (1999) An oxygen index evaluation of flammability on modified epoxy/polyester systems. Polymer 40:4093–4098

    Article  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  • Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16:149–158

    Article  CAS  Google Scholar 

  • Lee Y, Kang M (2010) The optical properties of nanoporous structured titanium dioxide and the photovoltaic efficiency on DSSC. Mater Chem Phys 122:284–289

    Article  CAS  Google Scholar 

  • Liu A, Berglund LA (2013) Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose. Eur Polym J 49:940–949

    Article  CAS  Google Scholar 

  • Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12:633–641

    Article  CAS  Google Scholar 

  • Mali S, Grossmann MVE, García MA, Martino MN, Zaritzky NE (2004) Barrier, mechanical and optical properties of plasticized yam starch films. Carbohydr Polym 56:129–135

    Article  CAS  Google Scholar 

  • Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung T (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13:3516–3523

    Article  CAS  Google Scholar 

  • Meneghetti P, Qutubuddin S (2006) Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochim Acta 442:74–77

    Article  CAS  Google Scholar 

  • Murugan KD, Radhika S, Baskaran I, Anbarasan R (2008) Clay catalyzed synthesis of bio-degradable poly (glycolic acid). Chin J Polym Sci 26:393–398

    Article  CAS  Google Scholar 

  • Park H, Misra M, Drzal LT, Mohanty AK (2004) “Green” nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 5:2281–2288

    Article  CAS  Google Scholar 

  • Priolo MA, Gamboa D, Holder KM, Grunlan JC (2010) Super gas barrier of transparent polymer–clay multilayer ultrathin films. Nano Lett 10:4970–4974

    Article  CAS  Google Scholar 

  • Sabard M, Gouanvé F, Espuche E, Fulchiron R, Seytre G, Fillot L, Trouillet-Fonti L (2014) Influence of montmorillonite and film processing conditions on the morphology of polyamide 6: effect on ethanol and toluene barrier properties. J Membr Sci 450:487–498

    Article  CAS  Google Scholar 

  • Saltalı K, Sarı A, Aydın M (2007) Removal of ammonium ion from aqueous solution by natural Turkish (Yıldızeli) zeolite for environmental quality. J Hazard Mater 141:258–263

    Article  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    Article  CAS  Google Scholar 

  • Shaw N, Monahan F, O’riordan E, O’sullivan M (2002) Physical properties of WPI films plasticized with glycerol, xylitol, or sorbitol. J Food Sci 67:164–167

    Article  CAS  Google Scholar 

  • Strawhecker K, Manias E (2000) Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem Mater 12:2943–2949

    Article  CAS  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Sun H, Li Z, Zhou J, Zhao Y, Lu M (2007) An electrostatic force microscope study of Si nanostructures on Si (100) as a function of post-annealing temperature and time. Appl Surf Sci 253:6109–6112

    Article  CAS  Google Scholar 

  • Tahir S, Rauf N (2004) Removal of Fe(II) from the wastewater of a galvanized pipe manufacturing industry by adsorption onto bentonite clay. J Environ Manag 73:285–292

    Article  CAS  Google Scholar 

  • Tetsuka H, Ebina T, Nanjo H, Mizukami F (2007) Highly transparent flexible clay films modified with organic polymer: structural characterization and intercalation properties. J Mater Chem 17:3545–3550

    Article  CAS  Google Scholar 

  • Theng BK (1974) The chemistry of clay–organic reactions. Wiley, New York

    Google Scholar 

  • Triantafyllidis KS, LeBaron PC, Park I, Pinnavaia TJ (2006) Epoxy–clay fabric film composites with unprecedented oxygen-barrier properties. Chem Mater 18:4393–4398

    Article  CAS  Google Scholar 

  • Veli S, Alyüz B (2007) Adsorption of copper and zinc from aqueous solutions by using natural clay. J Hazard Mater 149:226–233

    Article  CAS  Google Scholar 

  • Villaluenga J, Khayet M, Lopez-Manchado M, Valentin J, Seoane B, Mengual J (2007) Gas transport properties of polypropylene/clay composite membranes. Eur Polym J 43:1132–1143

    Article  CAS  Google Scholar 

  • VithaláGhule A (2006) Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chem 8:1034–1041

    Article  Google Scholar 

  • Wang Y, Fan S, Lee K, Li C, Huang S, Tsai H, Lai J (2004) Polyamide/SDS–clay hybrid nanocomposite membrane application to water–ethanol mixture pervaporation separation. J Membr Sci 239:219–226

    Article  CAS  Google Scholar 

  • Wang J, Cheng Q, Tang Z (2012) Layered nanocomposites inspired by the structure and mechanical properties of nacre. Chem Soc Rev 41:1111–1129

    Article  Google Scholar 

  • Wang Q, Cai J, Zhang L, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1:6678–6686

    Article  CAS  Google Scholar 

  • Wu K, Wang Z, Liang H (2008) Microencapsulation of ammonium polyphosphate: preparation, characterization, and its flame retardance in polypropylene. Polym Compos 29:854–860

    Article  CAS  Google Scholar 

  • Wu C, Saito T, Fujisawa S, Fukuzumi H, Isogai A (2012) Ultrastrong and high gas-barrier nanocellulose/clay-layered composites. Biomacromolecules 13:1927–1932

    Article  CAS  Google Scholar 

  • Wu C, Yang Q, Takeuchi M, Saito T, Isogai A (2014) Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale 6:392–399

    Article  CAS  Google Scholar 

  • Xie F, Wang Y, Yang B, Liu Y (2006) A novel intumescent flame-retardant polyethylene system. Macromol Mater Eng 291:247–253

    Article  CAS  Google Scholar 

  • Yang Q, Wu C, Saito T, Isogai A (2014) Cellulose–clay layered nanocomposite films fabricated from aqueous cellulose/LiOH/urea solution. Carbohydr Polym 100:179–184

    Article  CAS  Google Scholar 

  • Zhao J, Zhang X, Tu R, Lu C, He X, Zhang W (2014) Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix. Cellulose 21:1859–1872

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work was supported by the National Basic Research Program of China (973 Program, 2010CB732203), the Major Program of the National Natural Science Foundation of China (21334005) and the National Natural Science Foundation of China (51373125 and 21422405). The authors thank the facility support of the Natural Science Foundation of Hubei Province and the Fundamental Research Funds for the Central University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Cai or Lina Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Guo, J., Xu, D. et al. Facile construction of cellulose/montmorillonite nanocomposite biobased plastics with flame retardant and gas barrier properties. Cellulose 22, 3799–3810 (2015). https://doi.org/10.1007/s10570-015-0758-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0758-0

Keywords

Navigation