Skip to main content
Log in

Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanowhiskers (CNWs) prepared via TEMPO mediated oxidation are used as biodegradable filler in an epoxy matrix. Since CNWs are hydrophilic and epoxy is hydrophobic, amphiphilic block copolymer surfactants are employed to improve the interactions between the filler and the matrix. The surfactants used are Pluronics, a family of triblock copolymers containing two poly(ethylene oxide) blocks and one poly(propylene oxide) block. In this study, Pluronic L61 and L121 with molecular weight of 2000 and 4400 g/mol and hydrophilic to lipophilic balance of 3 and 1 respectively, are used and their effect on the dispersion of CNWs in epoxy is discussed. The hydrophilic tails of Pluronics interact with the hydroxyl and carboxylic groups on the CNW surface and then these surfactant-treated CNWs are directly incorporated into epoxy by high speed mixing. The dispersion state of the surfactant-treated CNWs in epoxy is assessed by rheological measurements and the mechanical properties of the resulting composites are characterized by tensile test and dynamic mechanical thermal analysis. The Pluronic L61 treated CNW/epoxy composites show the highest storage modulus at high temperatures (about 77 % increases) indicative of improved interfacial interactions between the CNWs and the epoxy matrix. Also, an increase of around 10 °C in the glass–rubbery transition temperature of the L61 treated CNW/epoxy composite leads to potential application at higher service temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour Technol 99:1664–1671. doi:10.1016/j.biortech.2007.04.029

    Article  CAS  Google Scholar 

  • Alexandridis P, Hatton TA (1995) Poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamic, and modeling. Colloids Surf A Physicochem Eng Asp 96:1–46

    Article  CAS  Google Scholar 

  • Aspler J, Bouchard J, Hamad W et al (2013) Review of nanocellulosic products and their applications, 1st edn. Wiley, Hoboken

    Google Scholar 

  • Batrakova EV, Li S, Alakhov VY et al (2003) Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. J Pharmacol Exp Ther 304:845–854. doi:10.1124/jpet.102.043307

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi:10.1021/bm049300p

    Article  CAS  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016. doi:10.1021/ma000417p

    Article  CAS  Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336. doi:10.1002/(SICI)1097-4628(19960222)59:8<1329:AID-APP17>3.3.CO;2-5

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630. doi:10.1163/156855407782106519

    Article  CAS  Google Scholar 

  • Cao X, Ding B, Yu J, Al-Deyab SS (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90:1075–1080. doi:10.1016/j.carbpol.2012.06.046

    Article  CAS  Google Scholar 

  • Capadona JR, Shanmuganathan K, Trittschuh S et al (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. Biomacromolecules 10:712–716. doi:10.1021/bm8010903

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y et al (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811. doi:10.1016/j.carbpol.2010.10.040

    Article  CAS  Google Scholar 

  • Cross L, Schueneman G, Mintz E et al (2013) Nanocellulose reinforced epoxy elastomer. In: Proceeding of the annual meeting of the adhesion, pp 25–27

  • Dong H, Strawhecker KE, Snyder JF et al (2012) Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: formation, properties and nanomechanical characterization. Carbohydr Polym 87:2488–2495. doi:10.1016/j.carbpol.2011.11.015

    Article  CAS  Google Scholar 

  • Eberle APR, Baird DG, Wapperom P (2008) Rheology of non-Newtonian fluids containing glass fibers: a review of experimental literature. Ind Eng Chem Res 47:3470–3488. doi:10.1021/ie070800j

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi:10.1021/bm700769p

    Article  CAS  Google Scholar 

  • Evers R, Kool M, Smith AJ et al (2000) Inhibitory effect of the reversal agents V-104, and MRP2-mediated transport. Br J Cancer 83:366–374

    Article  CAS  Google Scholar 

  • Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol (N Y N Y) 51:585. doi:10.1122/1.2736424

    Article  CAS  Google Scholar 

  • Fan J, Li Y (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88:1184–1188. doi:10.1016/j.carbpol.2012.01.081

    Article  CAS  Google Scholar 

  • Favier V, Chanzy H, Cavaille J (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28:6365–6367

    Article  CAS  Google Scholar 

  • Ghorabi S, Rajabi L, Madaeni SS et al (2012) Effects of three surfactant types of anionic, cationic and non-ionic on tensile properties and fracture surface morphology of epoxy/MWCNT nanocomposites. Iran Polym J 21:121–130. doi:10.1007/s13726-011-0013-y

    Article  CAS  Google Scholar 

  • Grant LDR, Adam RD, da Silva LFM (2009) Effect of the temperature on the strength of adhesively-bonded single lab an T joints for the automotive industry. Int J Adhes Adhes 29:535–542

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:1–35. doi:10.1155/2011/837875

    Google Scholar 

  • Kim J, Montero G, Habibi Y et al (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci. doi:10.1002/pen

    Google Scholar 

  • Li Y-Q, Fu S-Y, Mai Y-W (2006) Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer (Guildf) 47:2127–2132. doi:10.1016/j.polymer.2006.01.071

    Article  CAS  Google Scholar 

  • Li R, Fei J, Cai Y et al (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99. doi:10.1016/j.carbpol.2008.09.034

    Article  CAS  Google Scholar 

  • Li Y, Liu H, Song J et al (2011) Adsorption and association of a symmetric PEO–PPO–PEO triblock copolymer on polypropylene, polyethylene, and cellulose surfaces. ACS Appl Mater Interfaces 3:2349–2357

    Article  CAS  Google Scholar 

  • Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959. doi:10.1021/am301325r

    Article  CAS  Google Scholar 

  • Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739. doi:10.1021/bm050222v

    Article  CAS  Google Scholar 

  • Loos MR, Manas-Zloczower I (2013) Micromechanical models for carbon nanotube and cellulose nanowhisker reinforced composites. Polym Eng Sci. doi:10.1002/pen

    Google Scholar 

  • Loos MR, Yang J, Feke DL, Manas-Zloczower I (2012) Effect of block-copolymer dispersants on properties of carbon nanotube/epoxy systems. Compos Sci Technol 72:482–488. doi:10.1016/j.compscitech.2011.11.034

    Article  CAS  Google Scholar 

  • Martin-Gallego M, Verdejo R, Gestos A et al (2015) Morphology and mechanical properties of nanostructured thermoset/block copolymer blends with carbon nanoparticles. Compos Part A 71:136–143

    Article  CAS  Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. doi:10.1007/s10570-007-9145-9

    Article  Google Scholar 

  • Oh KT, Bronich TK, Kabanov AV (2004) Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J Control Release 94:411–422. doi:10.1016/j.jconrel.2003.10.018

    Article  CAS  Google Scholar 

  • Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196. doi:10.1016/j.compscitech.2005.12.010

    Article  CAS  Google Scholar 

  • Pircheraghi G, Foudazi R, Manas-Zloczower I (2015) Characterization of carbon nanotube dispersion and filler network formation in melted polyol for nanocomposite materials. Power Technol 276:222–231

    Article  CAS  Google Scholar 

  • Qin Z-Y, Tong G-L, Chin YCF, Zhou J-C (2011) Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by tempo oxidation. BioResource 6:1136–1146

    CAS  Google Scholar 

  • Reis JML, Amorim FC, da Silva AHMFT, da Costa Mattos HS (2015) Influence of temperature on the behavior of DGEBA (bisphenol A diglycidyl ether) epoxy adhesive. Int J Adhes Adhes 58:88–92. doi:10.1016/j.ijadhadh.2015.01.013

    Article  CAS  Google Scholar 

  • Ruiz-Pérez L, Royston GJ, Fairclough JPA, Ryan AJ (2008) Toughening by nanostructure. Polymer (Guildf) 49:4475–4488. doi:10.1016/j.polymer.2008.07.048

    Article  Google Scholar 

  • Sacui IA, Nieuwendaal RC, Burnett DJ et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138. doi:10.1021/am500359f

    Article  CAS  Google Scholar 

  • Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. doi:10.1007/s10853-011-5696-0

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2008) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Google Scholar 

  • Saito T, Okita Y, Nge TT et al (2006) TEMPO-mediated oxidation of native cellulose: microscopic analysis of fibrous fractions in the oxidized products. Carbohydr Polym 65:435–440. doi:10.1016/j.carbpol.2006.01.034

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129. doi:10.1016/j.carbpol.2010.07.029

    Article  CAS  Google Scholar 

  • Semsarzadeh M, Lotfali A, Mirzadeh H (1984) Jute reinforced polyester structures. Polym Compos 5:141–142

    Article  CAS  Google Scholar 

  • Silva MDBLEM, Campilho RDSG (2012) Effect of temperature on tensile strength and mode I fracture toughness of a high temperature epoxy adhesive. J Adhes Sci Technol 26:939–953

    Google Scholar 

  • Singh V, Khullar P, Dave PN, Kaur N (2013) Micelles, mixed micelles, and applications of polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers. Int J Ind Chem 4:12. doi:10.1186/2228-5547-4-12

    Article  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765. doi:10.3390/polym2040728

    Article  CAS  Google Scholar 

  • Souza JPB, Reis JML (2013) Thermal behavior of DGEBA (Diglycidyl Ether of Bisphenol A) adhesives and its influence on the strength of joints. Appl Adhes Sci 1:1–10

    Article  Google Scholar 

  • Sun C (2005) True density of microcrystalline cellulose. J Pharm Sci 94:2132–2134. doi:10.1002/jps.20459

    Article  CAS  Google Scholar 

  • Tang L, Weder C (2010) Cellulose whisker/epoxy resin nanocomposites. ACS Appl Mater Interfaces 2:1073–1080. doi:10.1021/am900830h

    Article  CAS  Google Scholar 

  • Tang L, Whalen J, Schutte G, Weder C (2009) Stimuli-responsive epoxy coatings. ACS Appl Mater Interfaces 1:688–696. doi:10.1021/am800199u

    Article  CAS  Google Scholar 

  • Tercjak A, Gutierrez J, Barud HS et al (2015) Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites. ACS Appl Mater Interfaces 7:4142–4150. doi:10.1021/am508273x

    Article  CAS  Google Scholar 

  • Wang P, Liu J, Li R (1994) Physical modification of polyacrylonitrile precursor fiber: its effect on mechanical properties. J Appl Polym Sci 52:1667–1674

    Article  CAS  Google Scholar 

  • Xu X, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs. cellulose nano fibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  Google Scholar 

  • Yang J, Zhao J, Xu F, Sun R (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interfaces 5:12960–12967

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the National Science Foundation for the financial support of our research through Grant PIRE-1243313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ica Manas-Zloczower.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, Z., Meng, Q., Pircheraghi, G. et al. Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties. Cellulose 22, 3161–3176 (2015). https://doi.org/10.1007/s10570-015-0728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0728-6

Keywords

Navigation