Skip to main content
Log in

Cellulose diacetate films as a solid-phase matrix for fluorescence analysis of pyrene traces in aqueous media

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We report on the possibility of using cellulose diacetate (CDA) films as a solid-phase matrix for the fluorescence analysis of pyrene in aqueous micellar media. We examined the effect of the concentration of three surfactants—the anionic sodium dodecyl sulfate (SDS), the cationic cetyltrimethylammonium bromide (CTAB), and the nonionic polyoxyethylene (10) mono-4-isooctylphenyl ether (TX-100)—on the fluorescence of pyrene in aqueous micellar solutions before and after sorptional concentration and as adsorbed on CDA films. The increased fluorescence intensity of pyrene on the solid-phase matrix was due to pyrene solubilization in the surfactant hemimicelles formed on the sorbent surface. The highest degree of pyrene recovery on CDA was achieved in the presence of micelles of the cationic CTAB. The surface electric potential of the CDA films was negative (−31.5 ± 2.5 mV), affecting the hydrocarbon recovery degree. The recovery degree and the polarity index of the pyrene molecules’ microenvironment in solution decreased in the sequence CTAB > SDS > TX-100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd El-Mohdy HL (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res 20(6):177–189

    Article  Google Scholar 

  • Abdel-Bary E (2003) Handbook of plastic films. iSmithers Rapra Publishing, Singapore

    Google Scholar 

  • Ahmad F, Atiyeh MN, Pereira B, Stephanopoulos GN (2013) A review of cellulosic microbial fuel cells: performance and challenges. Biomass Bioenerg 56:179–188

    Article  CAS  Google Scholar 

  • Amelina EA, Vidensky IV, Ivanova NI, Parfyonova AM, Pelekh VV, Altukhova NV, Shchukin ED (2001) Contact interactions between individual fibers of cellulose and its derivatives: mechanism of cationic surfactant action. Colloid J 63(5):527–531

    Article  CAS  Google Scholar 

  • Behera GB, Mishra BK, Behera PK, Panda M (1999) Fluorescent probes for structural and distance effect studies in micelles, reversed micelles and microemulsions. Adv Colloid Interface Sci 82(1–3):1–42

    Article  CAS  Google Scholar 

  • Beltyukova JI, Lyventsova EA, Teslyuk OI (2012) Determination of dehydroacetic acid in food using the solid-phase luminescence spectroscopy method. Odes’kyi Politechnichnyi Universytet Pratsi 39(2):292–298

    Google Scholar 

  • Bernier G, Lamotte M (2009) Field monitoring of PAHs in river water by direct fluorimetry on C18 solid sorbent. In: Quevauviller P, Greenwood R (eds) Rapid chemical and biological techniques for water monitoring. Wiley, Chichester, pp 275–280

    Chapter  Google Scholar 

  • Crans DC, Rithner CD, Baruah B, Gourley BL, Levinger NE (2006) Molecular probe location in reverse micelles determined by NMR dipolar interactions. J Am Chem Soc 128(13):4437–4445

    Article  CAS  Google Scholar 

  • Danyia S, Brosea F, Brasseura C, Schneiderb YJ, Larodelleb Y, Pussemierc L, Robbensd J, De Saegere S, Maghuin-Rogitera G, Scippoa ML (2009) Analysis of EU priority polycyclic aromatic hydrocarbons in food supplements using high performance liquid chromatography coupled to an ultraviolet, diode array or fluorescence detector. Anal Chim Acta 633(2):293–299

    Article  Google Scholar 

  • Dmitrienko SG, Gurariy EY, Nosov RE, Zolotov YA (2001) Solid-phase extraction of polycyclic aromatic hydrocarbons from aqueous samples using polyurethane foams in connection with solid-matrix spectrofluorimetry. Anal Lett 34(3):425–438

    Article  CAS  Google Scholar 

  • Dyachuk OA, Gubina TI, Mel’nikov GV (2009) Adsorption preconcentration in the luminescence determination of polycyclic aromatic hydrocarbons. J Anal Chem 64(1):7–11

    Article  Google Scholar 

  • Fan G, Wang M, Liao C, Fang T, Li J, Zhou R (2013) Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid. Carbohydr Polym 94(1):71–76

    Article  CAS  Google Scholar 

  • Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K (2008) Properties and applications of cellulose acetate. Macromol Symp 262:89–96

    Article  CAS  Google Scholar 

  • Gericke M, Fardim P, Heinze T (2012) Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17(6):7458–7502

    Article  Google Scholar 

  • Goryacheva IY, Shtykov SN, Loginov AS, Panteleeva IV (2005) Preconcentration and fluorimetric determination of polycyclic aromatic hydrocarbons based on the acid-induced cloud-point extraction with sodium dodecylsulfate. Anal Bioanal Chem 382(6):1413–1418

    Article  CAS  Google Scholar 

  • Guo R, Zhu XJ, Guo X (2003) The effect of β-cyclodextrin on the properties of cetyltrimetylammonium bromide micelles. Colloid Polym Sci 281:876–881

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Roja OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Huang C, Niu H, Wu C, Ke Q, Mo X, Lin T (2013) Disc—electrospun cellulose acetate butyrate nanofibers show enhance cellular growth performances. J Biomed Mater Res 101(1):115–122

    Article  Google Scholar 

  • Ishizaki A, Saitoa K, Hanioka N, Narimatsub S, Kataokaa H (2010) Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high-performance liquid chromatography-fluorescence detection. J Chromatogr A 1217:5555–5563

    Article  CAS  Google Scholar 

  • Kamide K (2005) Cellulose and cellulose derivatives. Elsevier, Amsterdam, p 652

    Google Scholar 

  • Konwarh R, Karak N, Misra M (2013) Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol Adv 31(4):421–437

    Article  CAS  Google Scholar 

  • Kulterer MR, Reichel VE, Kargl R, Köstler S, Sarbova V, Heinze T, Stana-Kleinschek K, Ribitsch V (2012) Functional polysaccharide composite nanoparticles from cellulose acetate and potential applications. Adv Funct Mater 22:1749–1758

    Article  CAS  Google Scholar 

  • Liu T, Wu J (2008) Effect of CTAB and procain hydrochloride on neutral red microstructure in CTAB micelle. Colloid J 70(3):311–316

    Article  CAS  Google Scholar 

  • Liu J, Li W, Zuo X, Liu S, Li Z (2013) Polyethylene-supported polyvinylidene fluoride–cellulose acetate butyrate blended polymer electrolyte for lithium ion battery. J Power Sources 226:101–106

    Article  CAS  Google Scholar 

  • Luan Y, Wu J, Zhan M, Zhang J, Zhang J, He J (2013) “One pot” homogeneous synthesis of thermoplastic cellulose acetate-graft-poly (l-lactide) copolymers from unmodified cellulose. Cellulose 20(1):327–337

    Article  CAS  Google Scholar 

  • Luo Y, Wang S, Shen M, Qi R, Fang Y, Guo R, Cai H, Cao X, Tomas H, Zhu M, Shi X (2013) Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Carbohydr Polym 91:419–427

    Article  CAS  Google Scholar 

  • Mel’nikov GV, Gubina TI, Dyachuk OA (2006) Influence of the polarity of the microenviroment of pyrene on the intensity of its solid-phase luminescence. J Phys Chem 80(7):1160–1163

    Google Scholar 

  • Nguyen TPN, Yun ET, Kim IC, Kwon YN (2013) Preparation of cellulose triacetate/cellulose acetate (CTA/CA)-based membranes for forward osmosis. J Memb Sci 433:49–59

    Article  CAS  Google Scholar 

  • Occello VNS, Veglia AV (2011) Cucurbit[6]uril nanocavity as an enhanced spectrofluorimetric method for the determination of pyrene. Anal Chim Acta 689(1):97–102

    Article  Google Scholar 

  • Ochsenkühn-Petropoulou M, Staikos K, Matuschek G, Kettrup A (2003) On-line determination of polycyclic aromatic hydrocarbons in airborne particulate matter by using pyrolysis/GC–MS. J Anal Appl Pyrol 70(1):73–85

    Article  Google Scholar 

  • Parashchenko II, Smirnova TD, Shtykov SN, Kochubei VI, Zhukova NN (2013) Doxycycline-sensitized solid-phase fluorescence of europium on silica in the presence of surfactants. J Anal Chem 68(2):112–116

    Article  CAS  Google Scholar 

  • Plaza-Bolanos P, Frenicha AG, Vidal JLM (2010) Polycyclic aromatic hydrocarbons in food and beverages. analytical methods and trends. J Chromatogr A 1217:6303–6326

    Article  CAS  Google Scholar 

  • Ramesh S, Shanti R, Morris E (2013) Characterization of conducting cellulose acetate based polymer electrolytes doped with “green” ionic mixture. Carbohydr Polym 91(1):14–21

    Article  CAS  Google Scholar 

  • Ramos LA, Morgado DL, El Seoud OA, da Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl–N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18(2):385–392

    Article  CAS  Google Scholar 

  • Rathore BS, Sharma G, Pathania D, Gupta VK (2014) Synthesis, characterization and antibacterial activity of cellulose acetate–tin (IV) phosphate nanocomposite. Carbohydr Polym 103:221–227

    Article  CAS  Google Scholar 

  • Rodríguez K, Renneckar S, Gatenholm P (2011) Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. ACS Appl Mater Interfaces 3:681–689

    Article  Google Scholar 

  • Romani AP, Machado AEH, Hioka N, Severino D, Bartista MS, Coodognoto L, Rodrigues MR, de Oliveira HPM (2009) Spectrofluorimetric determination of second critical micellar concentration of SDS and SDS/Brij 30 systems. J Fluoresc 19:327–332

    Article  CAS  Google Scholar 

  • Romanovskaya GI, Olenin AY, Vasil’eva SY (2011) Concentration of polycyclic aromatic hydrocarbons by chemically modified silver nanoparticles Russian. J Phys Chem A 85(2):274–278

    CAS  Google Scholar 

  • Rusanova TY, Markin AV, Yurova NS, Besarab NP, Gorin DA (2013) Sol–gel materials with silver nanoparticles for simultaneous concentration and detection of substances by SERS. Proc Saratov University Chem 13(4):12–19

    Google Scholar 

  • Saitoh T, Itoh H, Hiraide M (2009) Admicelle-enhanced synchronous fluorescence spectrometry for the selective determination of polycyclic aromatic hydrocarbons in water. Talanta 79:177–182

    Article  CAS  Google Scholar 

  • Shipovskaya AB (2013) Structure formation of powder cellulose esters and ethers in the vapors of specific liquids. In: Sanders DA (ed) Acetate: versatile building block of biology and chemistry. Nova, New York, pp 187–229

    Google Scholar 

  • Shipovskaya AB, Shmakov SL, Kazmicheva OF, Shchyogolev SY (2011) Optical activity of the anisotropic solutions of cellulose acetates in mesophasogenic solvents. Liq Cryst 38(3):361–369

    Article  CAS  Google Scholar 

  • Songsurang K, Miyagawa A, Abd Manaf ME, Phulkerd P, Nobukawa S, Yamaguchi M (2013) Optical anisotropy in solution-cast film of cellulose triacetate. Cellulose 20:83–96

    Article  CAS  Google Scholar 

  • Straško AV, Gubina TI, Shipovskaya AB, Mel’nikov AG, Malinkina ON (2014) Usage of cellulose diacetate as sorption material for fluorescent analysis of PAH. Orient J Chem 30(3):1013–1019

    Article  Google Scholar 

  • Tang CY, Zhao Y, Wang R, Hélix-Nielsen C, Fane AG (2013) Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308:34–40

    Article  CAS  Google Scholar 

  • Vasquez V, Baez ME, Bravo M, Fuentes E (2013) Determination of heavy polycyclic aromatic hydrocarbons of concern in edible oils via excitation–emission fluorescence spectroscopy on nylon membranes coupled to unfolded partial least-squares/residual bilinearisation. Anal Bioanal Chem 405:7497–7507

    Article  CAS  Google Scholar 

  • Vatankhah E, Prabhakaran MP, Jin G, Mobarakeh LG, Ramakrishna S (2014) Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J Biomater Appl 28(6):909–921

    Article  Google Scholar 

  • Wang H, Campiglia AD (2010) Direct determination of benzo[a]pyrene in water samples by a gold nanoparticle-based solid phase extraction method and laser-excited time-resolved Shpol’skii spectrometry. Talanta 83:233–240

    Article  CAS  Google Scholar 

  • Wang H, Yu S, Campiglia AD (2009) Solid-phase nano-extraction and laser-excited time-resolved Shpol’skii spectroscopy for the analysis of polycyclic aromatic hydrocarbons in drinking water samples. Anal Biochem 385:249–256

    Article  CAS  Google Scholar 

  • Wilson WB, Costa AA, Wang H, Campiglia AD, Dias JA, Dias SCL (2013) Pre-concentration of water samples with BEA zeolite for direct determination of polycyclic aromatic hydrocarbons with laser-excited time-resolved Shpol’skii spectroscopy. Microchem J 110:246–255

    Article  CAS  Google Scholar 

  • Xing C, Wang H, Hu Q, Xu F, Cao X, You J, Li Y (2013) Mechanical and thermal properties of eco-friendly poly(propylene carbonate)/cellulose acetate butyrate blends. Carbohydr Polym 92(1):1921–1927

    Article  CAS  Google Scholar 

  • Yang ZY, Wang WJ, Shao ZQ, Zhu HD, Li YH, Wang FJ (2013) The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose 20:159–168

    Article  Google Scholar 

  • Yu D, Huang F, Xu H (2012) Determination of critical concentrations by synchronous fluorescence spectrometry. Anal Methods 4(1):47–49

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The results of this work were obtained within the framework of implementation of State Task No. 4.1299.2014/K (Russian Ministry of Education and Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga N. Malinkina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shipovskaya, A.B., Gubina, T.I., Strashko, A.V. et al. Cellulose diacetate films as a solid-phase matrix for fluorescence analysis of pyrene traces in aqueous media. Cellulose 22, 1321–1332 (2015). https://doi.org/10.1007/s10570-015-0572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0572-8

Keywords

Navigation