Skip to main content
Log in

Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This paper discusses the practical application of a bucket vane viscometer in the characterization of novel nanofibrillated cellulose suspensions. Specifically, we use two different grades of nanocellulose, Masuko grinded and TEMPO oxidized ones. We work at the consistency range of 1–2.3 % w/w. We find, in agreement to more accurate rheometer based experiments, that both these materials behave in a highly non-linear manner. Thus, as we discuss in this paper, using a wide gap device necessitates the use of a correction algorithm in the conversion of the angular velocity to global shear rate to access the materials intrinsic, geometry independent, flow behavior. Furthermore, from the application viewpoint, we find that the classically measured low shear rate viscosity is not a good quantity to characterize these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agoda-Tandjawa G, Durand S, Gaillard C, Garnier C, Doublier JL (2012) Rheological behaviour and microstructure of microfibrillated cellulose suspensions/low-methoxyl pectin mixed systems. Effect of calcium ions. Carbohydr Polym 87(2):1045–1057

    Article  CAS  Google Scholar 

  • Ahola S, Myllytie P, Österberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. BioResources 3(4):1315–1328

    Google Scholar 

  • Ancey C (2005) Solving the Couette inverse problem using a wavelet–vaguelette decomposition. J Rheol 49(2):441–460

    Article  CAS  Google Scholar 

  • Barnes H, Carnali J (1990) The vane-in-cup as a novel rheometer geometry for shear thinning and thixotropic materials. J Rheol 34(6):841–866

    Article  Google Scholar 

  • Barnes HA, Nguyen QD (2001) Rotating vane rheometry—a review. J Non-Newton Fluid Mech 98(1):1–14

    Article  CAS  Google Scholar 

  • Chatzimina M, Gerogiou G, Alexandrou A (2009) Wall shear rates in circular Couette Flow of a Herschel–Bulkley fluid. Appl Rheol 19(3):34288

    Google Scholar 

  • Corrêa AC, de Morais Teixeira E, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183–1192

    Article  Google Scholar 

  • Coussot P (2005) Rheometry of pastes, suspensions, and granular materials: applications in industry and environment. Wiley, New York

    Book  Google Scholar 

  • Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava MJ, Paltakari J, Maloney T (2013a) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20(6):2847–2861

    Article  CAS  Google Scholar 

  • Dimic-Misic K, Puisto A, Paltakari J, Alava MJ, Maloney T (2013b) The influence of shear on the dewatering of high consistency nanofibrillated cellulose furnishes. Cellulose 20(4):1853–1864

    Article  CAS  Google Scholar 

  • Divoux T, Tamarii D, Barentin C, Manneville S (2010) Transient shear banding in a simple yield stress fluid. Phys Rev Lett 104(20):1–4

    Article  Google Scholar 

  • Divoux T, Barentin C, Manneville S (2011) From stress-induced fluidization processes to Herschel–Bulkley behaviour in simple yield stress fluids. Soft Matter 7(18):8409–8418

    Article  CAS  Google Scholar 

  • Divoux T, Grenard V, Manneville S (2013) Rheological hysteresis in soft glassy materials. Phys Rev Lett 110(1):018304

    Article  Google Scholar 

  • Fisher DT, Clayton SA, Boger DV, Scales PJ (2007) The bucket rheometer for shear stress–shear rate measurement of industrial suspensions. J Rheol 51(5):821–831

    Article  CAS  Google Scholar 

  • Haimoni A, Hannant D (1988) Developments in the shear vane test to measure the gel strength of oilwell cement slurry. Adv Cem Res 1(4):221–229

    Article  Google Scholar 

  • Heirman G, Vandewalle L, Van Gemert D, Wallevik O (2008) Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer. J Non-Newton Fluid Mech 150(2–3):93–103

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: Applied Polymer Symposium Conference: 9 Cellulose Conference No CONF-8205234, vol 37

  • Horvath AE, Lindström T, Laine J (2006) On the indirect polyelectrolyte titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA. Langmuir 22(2):824–830

    Article  CAS  Google Scholar 

  • Iotti M, Gregersen ØW, Moe S, Lenes M (2010) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19(1):137–145

    Article  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  Google Scholar 

  • Junka K, Filpponen I, Lindström T, Laine J (2013) Titrimetric methods for the determination of surface and total charge of functionalized nanofibrillated/microfibrillated cellulose (NFC/MFC). Cellulose 20(6):2887–2895

    Article  CAS  Google Scholar 

  • Karppinen A, Vesterinen AH, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18(6):1381–1390

    Article  CAS  Google Scholar 

  • Karppinen A, Saarinen T, Salmela J, Laukkanen A, Nuopponen M, Seppälä J (2012) Flocculation of microfibrillated cellulose in shear flow. Cellulose 19(6):1807–1819

    Article  CAS  Google Scholar 

  • Kieweg SL, Katz DF (2006) Squeezing flows of vaginal gel formulations relevant to microbicide drug delivery. J Biomech Eng 128(4):540–553

    Article  Google Scholar 

  • Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40(12):4250–4259

    Article  CAS  Google Scholar 

  • Krieger IM, Samuel HM (1952) Direct determination of the flow curves of non-Newtonian fluids. J Appl Phys 23(1):147–149

    Article  CAS  Google Scholar 

  • Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15(3):425–433

    Article  CAS  Google Scholar 

  • Lettinga MP, Manneville S (2009) Competition between shear banding and wall slip in wormlike micelles. Phys Rev Lett 103(24):248302

    Article  Google Scholar 

  • Manneville S, Salmon JB, Colin A (2004) A spatio-temporal study of rheo-oscillations in a sheared lamellar phase using ultrasound. Eur Phys J E 13(2):197–212

    Article  CAS  Google Scholar 

  • Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147:214–227

    Article  Google Scholar 

  • Mishra SP, Thirree J, Manent AS, Chabot B, Daneault C (2010) Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: effect of process variables. BioResources 6(1):121–143

    Google Scholar 

  • Møller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283

    Article  Google Scholar 

  • Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69(7):1293–1297

    Article  CAS  Google Scholar 

  • Ovarlez G, Rodts S, Ragouilliaux A, Coussot P, Goyon J, Colin A (2008) Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys Rev E 78(3):036307

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  • Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499

    Article  Google Scholar 

  • Puisto A, Illa X, Mohtaschemi M, Alava MJ (2012) Modeling the viscosity and aggregation of suspensions of highly anisotropic nanoparticles. Eur Phys J E 35(1):1–7

    Article  Google Scholar 

  • Richmond F (2012) The coating of nanofibrillated cellulose onto paper using flooded and metered size press, methods. 12PaperCon

  • Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19(3):647–659

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17(4):835–848

    Article  CAS  Google Scholar 

  • Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111

    Article  CAS  Google Scholar 

  • Subramanian R, Hiltunen E, Gane PA (2011) Potential use of micro-and nanofibrillated cellulose composites exemplified by paper. In: Cellulose fibers: bio-and nano-polymer composites, Springer, pp 121–152

  • Turbak AF, Snyder FW, Sandberg KR (1984) Microfibrillated cellulose—a new composition of commercial significance. Nonwovens SympNotes 37(2):115–124

    Google Scholar 

  • Walls H, Caines SB, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47(4):847–868

    Article  CAS  Google Scholar 

  • Yeow YL, Ko WC, Tang PPP (2000) Solving the inverse problem of Couette viscometry by Tikhonov regularization. J Rheol 44(6):1335–1351

    Article  CAS  Google Scholar 

  • Yeow YL, Wickramasinghe SR, Leong YK, Han B (2002) Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data. Biotechnol prog 18(5):1068–1075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Effnet program in the Finnish Forest Cluster Ltd. Also, the support from the Academy of Finland through the COMP Center of Excellence, the project number 140268, and within the framework of the International Doctoral Programme in Bioproducts Technology (PaPSaT) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Mohtaschemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohtaschemi, M., Dimic-Misic, K., Puisto, A. et al. Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21, 1305–1312 (2014). https://doi.org/10.1007/s10570-014-0235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0235-1

Keywords

Navigation