Skip to main content
Log in

Mercury’s resonant rotation from secular orbital elements

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet’s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury’s interior structure. In particular, we derive a mean orbital period of \((87.96934962 \pm 0.00000037)\,\hbox {days}\) and (assuming a perfect resonance) a spin rate of \((6.138506839\pm 0.000000028){}^{\circ }/\hbox {day}\). The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101–135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury’s rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. F. Mignard, OCA/CNRS, ftp://ftp.obs-nice.fr/pub/mignard/Famous.

References

  • Archinal, B.A., A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., et al.: Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest. Mech. Dyn. Astron. 109(2), 101–135 (2011). doi:10.1007/s10569-010-9320-4

    Article  MATH  ADS  Google Scholar 

  • Bate, R.R., Mueller, D.D., White, J.E.: Fundamentals of Astrodynamics, pp. 62–64. Dover publications, New York (1970)

  • Colombo, G.: Rotational period of the planet Mercury. Nature 208, 575 (1965). doi:10.1038/208575a0

    Article  ADS  Google Scholar 

  • Davies, M.E., Abalakin, V.K., Cross, C.A., Duncombe, R.L., Masursky, H., Morando, B., et al.: Report of the IAU working group on cartographic coordinates and rotational elements of the planets and satellites. Celest. Mech. 22(3), 205–230 (1980). doi:10.1007/BF01229508

    Article  MathSciNet  ADS  Google Scholar 

  • D’Hoedt, S., Noyelles, B., Dufey, J., Lemaitre, A.: Determination of an instantaneous Laplace plane for Mercury’s rotation. Adv. Space Res. 44(5), 597–603 (2009). doi:10.1016/j.asr.2009.05.008

    Article  ADS  Google Scholar 

  • Einstein, A.: Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte K. preuss. Akad. Wiss. 47, 831–839 (1915)

    Google Scholar 

  • Fienga, A., Manche, H., Laskar, J., Gastineau, M., Verma, A.: INPOP New Release: INPOP13b. arXiv preprint arXiv:1405.0484 (2014)

  • Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. Interplanet. Netw. Prog. Rep. 196, 1–81 (2014)

    Google Scholar 

  • Goldreich, P., Peale, S.J.: Spin-orbit coupling in the Solar System. Astron. J. 71, 425 (1966). doi:10.1086/109947

    Article  ADS  Google Scholar 

  • Kaula, W.M.: Theory of Satellite Geodesy: Applications of Satellites to Geodesy, 160 pp. Dover, Mineola (2000)

  • Laskar, J.: A numerical experiment on the chaotic behaviour of the Solar System. Nature 338(6212), 237–238 (1989). doi:10.1038/338237a0

    Article  ADS  Google Scholar 

  • Margot, J.L.: A Mercury orientation model including non-zero obliquity and librations. Celest. Mech. Dyn. Astron. 105(4), 329–336 (2009). doi:10.1007/s10569-009-9234-1

    Article  MATH  ADS  Google Scholar 

  • Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V.: Large longitude libration of Mercury reveals a molten core. Science 316(5825), 710–714 (2007). doi:10.1126/science.1140514

    Article  ADS  Google Scholar 

  • Margot, J.L., Peale, S.J., Solomon, S.C., Hauck, S.A., Ghigo, F.D., Jurgens, R.F., et al.: Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res. 117(E12), E00L09 (2012). doi:10.1029/2012JE004161

    ADS  Google Scholar 

  • Mazarico, E., Genova, A., Goossens, S., Lemoine, F.G., Neumann, G.A., Zuber, M.T., et al.: The gravity field, orientation and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. Planets (2014). doi:10.1002/2014JE004675

  • Noyelles, B., D’Hoedt, S.: Modeling the obliquity of Mercury. Planet Space Sci. 60(1), 274–286 (2012). doi:10.1016/j.pss.2011.07.024

    Article  ADS  Google Scholar 

  • Noyelles, B., Lhotka, C.: The influence of orbital dynamics, shape and tides on the obliquity of Mercury. Adv. Space Res. 52(12), 2085–2101 (2013). doi:10.1016/j.asr.2013.09.024

    Article  ADS  Google Scholar 

  • Peale, S.J.: Generalized Cassini’s laws. Astron. J. 74, 483 (1969). doi:10.1086/110825

    Article  ADS  Google Scholar 

  • Peale, S.J.: Orbital resonances in the Solar System. Annu. Rev. Astron. Astrophys. 14(1), 215–246 (1976). doi:10.1146/annurev.aa.14.090176.001243

    Article  ADS  Google Scholar 

  • Peale, S.J.: Measurement accuracies required for the determination of a Mercurian liquid core. Icarus 48(1), 143–145 (1981). doi:10.1016/0019-1035(81)90160-3

    Article  ADS  Google Scholar 

  • Peale, S.J.: The free precession and libration of Mercury. Icarus 178(1), 4–18 (2005). doi:10.1016/j.icarus.2005.03.017

    Article  ADS  Google Scholar 

  • Peale, S.J.: The proximity of Mercury’s spin to Cassini state 1 from adiabatic invariance. Icarus 181(2), 338–347 (2006). doi:10.1016/j.icarus.2005.10.006

    Article  ADS  Google Scholar 

  • Peale, S.J., Gold, T.: Rotation of the planet Mercury. Nature 206, 1240–1241 (1965). doi:10.1038/2061240b0

    Article  ADS  Google Scholar 

  • Peale, S.J., Yseboodt, M., Margot, J.L.: Long-period forcing of Mercury’s libration in longitude. Icarus 187(2), 365–373 (2007). doi:10.1016/j.icarus.2006.10.028

    Article  ADS  Google Scholar 

  • Peale, S.J., Margot, J.L., Hauck, S.A., Solomon, S.C.: Effect of core-mantle and tidal torques on Mercury’s spin axis orientation. Icarus 231, 206–220 (2014). doi:10.1016/j.icarus.2013.12.007

    Article  ADS  Google Scholar 

  • Pettengill, G.H., Dyce, R.B.: A radar determination of the rotation of the planet Mercury. Nature 206, 1240 (1965). doi:10.1038/2061240a0

    Article  ADS  Google Scholar 

  • Sanders, J.A., Verhulst, F., Murdock, J.: Some elementary exercises in celestial mechanics. In: Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol. 59, pp. 363–376. Springer, New York (2007). doi:10.1007/978-0-387-48918-6_17

  • Standish, E.M., Williams, J.G.: Orbital ephemerides of the Sun, Moon, and planets. In: Urban, S.E., Seidelmann, P.K. (eds.) Explanatory Supplement to the Astronomical Almanac, 3rd edn, University Science Books, chap. 8, pp. 338–339 (2013)

  • Stark, A., Oberst, J., Preusker, F., Gwinner, K., Peale, S.J., Margot, J.L., et al.: Mercury’s rotational parameters from MESSENGER image and laser altimetry data: a feasibility study. Planet. Space Sci. (2015). doi:10.1016/j.pss.2015.05.006

  • Weinberg, S.: Gravitation and Cosmology: Principle and Applications of General Theory of Relativity, p. 199. Wiley, New York (1972)

  • Yseboodt, M.: The Laplace plane of Mercury. In: EPSC-DPS Joint Meeting, vol. 1, p. 996 (2011)

  • Yseboodt, M., Margot, J.L.: Evolution of Mercury’s obliquity. Icarus 181(2), 327–337 (2006). doi:10.1016/j.icarus.2005.11.024

    Article  ADS  Google Scholar 

  • Yseboodt, M., Margot, J.L., Peale, S.J.: Analytical model of the long-period forced longitude librations of Mercury. Icarus 207(2), 536–544 (2010). doi:10.1016/j.icarus.2009.12.020

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Jean-Luc Margot, Benoît Noyelles, Stanton J. Peale, and Marie Yseboodt for fruitful discussions, and we also thank William M. Folkner and Charles H. Acton for providing information on the DE432 ephemeris. The reviews by two anonymous reviewers significantly improved earlier versions of this manuscript. J.O. greatly acknowledges being hosted by MIIGAiK and supported by the Russian Science Foundation under project 14-22-00197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Stark.

Appendices

Appendix 1

The Keplerian orbital elements derived from the INPOP13c ephemeris (Fienga et al. 2014) are given in Table 2. We find very little difference of the values when comparing to the DE432 ephemeris (see Table 1). The deviation for the trend \(a_1\) of the semi-major axis is about 1.7 meter per century.

Table 2 The same as Table 1 but derived from the INPOP13c ephemeris and a time span of 2000 years (09.06.973 AD—23.06.2973)

In Table 3 we give values for reference frame dependent orbital elements with respect to the ecliptic (ECLIP, inclination 23.439291\(^\circ \)), Mercury orbital plane (OP), and Mercury Laplace plane (LP) at J2000.0. The rotation matrices for the transformation to the these reference frames from the ICRF are given by

$$\begin{aligned} \mathbf {R}_{\text {\tiny ECLIP}}=\left( \begin{array}{r r r} 1 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0.91748206 &{}\quad 0.39777716 \\ 0 &{}\quad -0.39777716 &{}\quad 0.91748206 \end{array}\right) , \end{aligned}$$
(38)
$$\begin{aligned} \mathbf {R}_{\text {\tiny OP}}=\left( \begin{array}{r r r} 0.98166722 &{}\quad 0.19060290 &{}\quad 0 \\ -0.16742216 &{}\quad 0.86227887 &{}\quad 0.47795918\\ 0.09110040 &{}\quad -0.46919686 &{}\quad 0.87838205 \end{array}\right) , \end{aligned}$$
(39)
$$\begin{aligned} \mathbf {R}_{\text {\tiny LP}}=\left( \begin{array}{r r r} 0.88845611 &{}\quad 0.43672271 &{}\quad 0.14113473 \\ -0.45838720 &{}\quad 0.82896828 &{}\quad 0.32045711 \\ 0.02295468 &{}\quad -0.34940643 &{}\quad 0.93669004 \end{array}\right) . \end{aligned}$$
(40)

The precession of the pericenter of Mercury is given by \(\varpi _1^{\mathrm{OP}}=\varOmega _1^{\mathrm{OP}}+\omega _1^{\mathrm{OP}}=575.3\,\text {arc sec/cy}\). The inclination of the orbital plane with respect to the Laplace plane \(I_0^{\mathrm{LP}}=\iota =8.58^{\circ }\) remains constant \(I_1^{\mathrm{LP}}=I_2^{\mathrm{LP}}\approx 0\). The precession of the orbit around the Laplace plane is \(|\varOmega _1^{\mathrm{LP}}|=\mu =0.109981^{\circ }/\text {cy}\).

Table 3 Orbital elements of Mercury as derived from the DE432 ephemeris at epoch J2000.0 with respect to the following reference frames: Ecliptic and Earth equinox of J2000; Mercury orbital plane of J2000.0 and ascending node with respect to the ecliptic; Mercury Laplace plane and ascending node with respect to the Mercury orbital plane of J2000.0

Appendix 2

In Table 4 we list the first ten periodic terms, which were identified in the osculating orbital elements time series. Some of the periods can be assigned to planetary perturbations, e.g., Venus: \((\lambda _V)\) 0.62 years; \((2\lambda _V)\) 0.31 years; \((2\lambda _M-5\lambda _V)\) 5.66 years; \((\lambda _M - 3\lambda _V)\) 1.38 years; \((\lambda _M - 2 \lambda _V)\) 1.11 years; \((2\lambda _M-4\lambda _V)\) 0.55 years; Earth: \((\lambda _M-4\lambda _E)\) 6.58 years; Jupiter: \((\lambda _{J})\) 11.86 years; \((2\lambda _{J})\) 5.93 years; \((3\lambda _{J})\) 3.95 years; Saturn: \((2\lambda _{S})\) 14.73 years, where \(\lambda =M+\varpi = M + \varOmega + \omega \) denotes the mean longitude of the planet, respectively.

Table 4 Ten leading terms of the decomposition of the time series of the osculating orbital elements in \(\sum _i A_i\cos (\nu _i\,t +\phi _i)\) with \(\nu _i = 2\pi /T_i\)

Appendix 3

The obliquity of the spin axis \(i_c\) introduces small changes in the precession and resonant rotation rates. To stay within the Cassini plane the spin axis has to precess slightly faster than the orbital plane normal. In order to compute the corrections we expand equation Eq. 33 to first order in the obliquity \(i_c\). The declination \(\delta \) and right ascension \(\alpha \) of the spin axis are then given by

$$\begin{aligned} \delta (t) = \frac{\pi }{2}-I + \frac{\dot{\varOmega }\sin I}{\sqrt{\dot{I}^2+(\dot{\varOmega }\sin I)^2}}i_c=\delta _0 + \delta _1 t \end{aligned}$$
(41)

and

$$\begin{aligned} \alpha (t) = \varOmega -\frac{\pi }{2}+ \frac{\dot{I}/\sin I}{\sqrt{\dot{I}^2+(\dot{\varOmega }\sin I)^2}}i_c=\alpha _0 + \alpha _1 t. \end{aligned}$$
(42)

By deriving the series in t we obtain the precession rates at J2000.0

$$\begin{aligned} \delta _1 = I_1\left( -1 + \frac{\varOmega _1 I_1^2 \cos I_0 + 2(\varOmega _2 I_1-I_2\varOmega _1)}{\sqrt{(I_1^2+(\varOmega _1\sin I_0)^2)^3}}i_c\right) \end{aligned}$$
(43)

and

$$\begin{aligned} \alpha _1 = \varOmega _1 - \frac{(I_1^2\cot I_0 + \varOmega _1^2\sin 2I_0)I_1^2/\sin I_0}{\sqrt{(I_1^2+(\varOmega _1\sin I_0)^2)^3}}i_c. \end{aligned}$$
(44)

For \(i_c=2.04\,\text {arc min}\) (Margot et al. 2012) this results in

$$\begin{aligned} \delta _1 = -0.00486^{\circ }/{\text {cy}} \text { and }\alpha _1 = -0.03291^{\circ }/{\text {cy}}. \end{aligned}$$
(45)

The rotation rate is also slightly modified due to the obliquity. For small \(i_c\) we get

$$\begin{aligned} \varphi (t) = \frac{3}{2}M+ \omega - \frac{\dot{I}\cot I}{\sqrt{\dot{I}^2+(\dot{\varOmega }\sin I)^2}}i_c=\varphi _0^{(3/2)} + \varphi _1^{(3/2)} t. \end{aligned}$$
(46)

The resonant rotation rate is consequently

$$\begin{aligned} \varphi _1^{(3/2)} = \frac{3}{2}n_0 + \omega _1 + \frac{(I_1 \varOmega _1)^2(3+\cos 2 I_0)/2 + (\varOmega _2 I_1-I_2\varOmega _1)\varOmega _1\sin 2I_0+I_1^4/(\sin I_0)^2}{\sqrt{(I_1^2+(\varOmega _1\sin I_0)^2)^3}}i_c \end{aligned}$$
(47)

and with \(i_c=2.04\,\text {arc min}\) this amounts to \(6.138506841^{\circ }/\text {day}\). The introduced correction is not significant when compared to the error of the resonant rotation rate in Eq. 21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, A., Oberst, J. & Hussmann, H. Mercury’s resonant rotation from secular orbital elements. Celest Mech Dyn Astr 123, 263–277 (2015). https://doi.org/10.1007/s10569-015-9633-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-015-9633-4

Keywords

Navigation