Skip to main content
Log in

SnO2 Nanoparticle-Decorated Graphene Oxide Sheets Efficiently Catalyze Baeyer–Villiger Oxidation with H2O2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Uniform rutile SnO2 nanoparticles with small size (ca. 3 nm) were highly dispersed on both sides of GO sheets through electrostatic interactions, giving pseudo-homogeneous catalysts of SnO2/GO nanocomposites. The SnO2-decorated GO nanocomposites, especially, SnO2 (15 wt%)/GO was highly efficient and reusable in Baeyer–Villiger oxidation of ketones with H2O2.

Graphical Abstract

SnO2/GO nanocomposites, where uniform SnO2 nanoparticles were tightly gripped on both sides of GO sheets by surface oxygenated functional groups through electrostatic interaction, have proved to be a versatile, efficient and reusable catalyst for the BV oxidation of ketones with H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Conte V, Floris B, Galloni P, Mirruzzo V, Scarso A, Sordi D, Strukul G (2005) Green Chem 7:262

    Article  CAS  Google Scholar 

  2. Jiménez-Sanchidrián C, Ruiz JR (2008) Tetrahedron 64:2011

    Article  CAS  Google Scholar 

  3. Sasakura N, Nakano K, Ichikawa Y, Kotsuki H (2012) RSC Adv 2:6135

    Article  CAS  Google Scholar 

  4. Hammond C, Conrad S, Hermans I (2012) Angew Chem Int Ed 51:11736

    Article  CAS  Google Scholar 

  5. Luo Y, Bui L, Gunther WR, Min E, Román-Leshkov Y (2012) ACS Catal 2:2695

    Article  CAS  Google Scholar 

  6. Hara T, Hatakeyama M, Kim A, Ichikuni N, Shimazu S (2012) Green Chem 14:771

    Article  CAS  Google Scholar 

  7. Ma Q, Xing W, Xu J, Peng X (2014) Catal Commun 53:5

    Article  CAS  Google Scholar 

  8. Uyanik M, Ishihara K (2013) ACS Catal 3:513

    Article  CAS  Google Scholar 

  9. Chen S, Zhou X, Li Y, Luo R, Ji H (2014) Chem Eng J 41:138

    Article  CAS  Google Scholar 

  10. Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature 412:423

    Article  CAS  Google Scholar 

  11. Wang Y, Yokoi T, Otomo R, Kondo JN, Tatsumi T (2015) Appl Catal A 490:93

    Article  CAS  Google Scholar 

  12. Corma A, Navarro MT, Nemeth L, Renz M (2001) Chem Commun 21:2190

    Article  CAS  Google Scholar 

  13. Corma A, Navarro MT, Renz M (2003) J Catal 219:242

    Article  CAS  Google Scholar 

  14. Li L, Stroobants C, Lin KF, Jacobs PA, Sels BF, Pescarmona PP (2011) Green Chem 13:1175

    Article  CAS  Google Scholar 

  15. Osmundsen CM, Holm MS, Dahl S, Taarning E (2012) Proc R Soc A 468:2000

    Article  CAS  Google Scholar 

  16. Cho HJ, Dornath P, Fan W (2014) ACS Catal 4:2029

    Article  CAS  Google Scholar 

  17. Pillai UR, Sahle-Demessie E (2003) J Mol Catal A 191:93

    Article  CAS  Google Scholar 

  18. Lei Z, Zhang Q, Luo J, He X (2005) Tetrahedron Lett 46:3505

    Article  CAS  Google Scholar 

  19. He S, An Z, Wei M, Evans DG, Duan X (2013) Chem Commun 49:5912

    Article  CAS  Google Scholar 

  20. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 422:282

    Article  CAS  Google Scholar 

  21. Kakaei K, Dorraji M (2014) Electrochim Acta 143:207

    Article  CAS  Google Scholar 

  22. Kakaei K (2015) Electrochim Acta 165:330

    Article  CAS  Google Scholar 

  23. Lan D, Yang F, Luo S, Au C, Yin S (2014) Carbon 73:351

    Article  CAS  Google Scholar 

  24. Zheng W, Tan R, Yin S, Zhang Y, Zhao G, Chen Y, Yin D (2015) Catal Sci Technol 5:2092

    Article  CAS  Google Scholar 

  25. Tan C, Zhao S, Yang G, Hu S, Qin X (2015) Ionics 21:987

    Article  CAS  Google Scholar 

  26. Thomas R, Rao KY, Rao GM (2014) Mater Express 4:65

    Article  CAS  Google Scholar 

  27. Patil S, Patil V, Sathaye S, Patil K (2014) RSC Adv 4:4094

    Article  CAS  Google Scholar 

  28. Zhou X, Wan L, Guo Y (2013) Adv Mater 25:2152

    Article  CAS  Google Scholar 

  29. Deosarkar MP, Pawar SM, Sonawane SH, Bhanvase BA (2013) Chem Eng Process 70:48

    Article  CAS  Google Scholar 

  30. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  31. Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) J Mater Chem 19:2710

    Article  CAS  Google Scholar 

  32. Wang H, Cui L, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) J Am Chem Soc 132:13978

    Article  CAS  Google Scholar 

  33. Bai H, Li C, Shi G (2011) Adv Mater 23:1089

    Article  CAS  Google Scholar 

  34. Li Z, Wu S, Ding H, Zheng D, Hu J, Wang X, Huo Q, Guan J, Kan Q (2013) New J Chem 37:1561

    Article  CAS  Google Scholar 

  35. Luo S, Xu X, Zhou G, Liu C, Tang Y, Liu Y (2014) J Hazard Mater 274:145

    Article  CAS  Google Scholar 

  36. Li Y, Lv X, Lu J, Li J (2010) J Phys Chem C 114:21770

    Article  CAS  Google Scholar 

  37. Seema H, Christian KK, Chandra V, Kim KS (2012) Nanotechnol 23:355705

    Article  CAS  Google Scholar 

  38. Tang L, Nguyen VH, Lee YR, Kim J, Shim JJ (2015) Synth Met 201:54

    Article  CAS  Google Scholar 

  39. Zhu Y, Wang Y, Xie J, Cao G, Zhu T, Zhao X, Yang H (2015) Electrochim Acta 154:338

    Article  CAS  Google Scholar 

  40. Zhu J, Zeng G, Nie F, Xu X, Chen S, Han Q, Wang X (2010) Nanoscale 2:988

    Article  CAS  Google Scholar 

  41. Qu J, Shi L, He C, Gao F, Li B, Zhou Q, Hu H, Shao G, Wang X, Qiu J (2014) Carbon 66:485

    Article  CAS  Google Scholar 

  42. Liu H, Liu T, Dong X, Lv Y, Zhu Z (2014) Mater Lett 126:36

    Article  CAS  Google Scholar 

  43. Tang XZ, Li W, Yu ZZ, Rafiee MA, Rafiee J, Yavari F, Koratkar N (2011) Carbon 49:1258

    Article  CAS  Google Scholar 

  44. Lei Z, Ma G, Jia C (2007) Catal Commun 8:305

    Article  CAS  Google Scholar 

  45. Zhang Q, Wen S, Lei Z (2006) React Funct Polym 66:1278

    Article  CAS  Google Scholar 

  46. Lei Z, Wei L, Wang R, Ma G (2008) Catal Commun 9:2467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was financially supported by the National Natural Science Foundation of China (Grant No. 21476069), the Scientific Research Fund of Hunan Provincial Education Department (13B072), the Program for Excellent Talents in Hunan Normal University (ET14103), the Hunan Provincial Innovation Foundation for Postgraduate (CX2013B209) and the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Tan or Donghong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Tan, R., Luo, X. et al. SnO2 Nanoparticle-Decorated Graphene Oxide Sheets Efficiently Catalyze Baeyer–Villiger Oxidation with H2O2 . Catal Lett 146, 281–290 (2016). https://doi.org/10.1007/s10562-015-1639-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1639-8

Keywords

Navigation