Skip to main content
Log in

Preparation and Catalytic Property of Multi-walled Carbon Nanotubes Supported Keggin-Typed Tungstosilicic Acid for the Baeyer–Villiger Oxidation of Ketones

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) supported HSiW/MWCNTs was successfully prepared and characterized by Fourier transform infrared spectoscopy, X-ray powder diffraction, transmission electron microscopy and N2 adsorption–desorption test. Its catalytic performance for the catalytic Baeyer–Villiger oxidation of cyclic ketones with 30 % H2O2 as oxidants was investigated. It was found that HSiW/MWCNTs was very efficient to transform of some cycloketones to the corresponding lactones with high conversions as well as selectivities. Factors affecting the oxidations and the reusability of the catalyst were also investigated. It was found that the catalyst can be reused seven times in the catalytic oxidation reaction of cyclopentanone without obviously catalytic activity losing in the oxidation.

Graphical Abstract

A supported solid acid of HSiW/MWCNTs was used as efficient catalyst for the Baeyer–Villiger oxidation of ketones. High cyclopentanone conversion (98 %) and ε- valerolactone selectivity (99 %) were obtained. The catalyst can be reused at least seven runs in the oxidation of cyclopentanone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Izumi Y, Hisano K, Hida T (1999) Appl Catal A Gen 181:277

    Article  CAS  Google Scholar 

  2. Kozhevnikov IV, Matveev KI (1983) Appl Catal 5:135

    Article  CAS  Google Scholar 

  3. Okuhara T, Mizuno N, Misono M (2001) Appl Catal A Gen 222:63

    Article  CAS  Google Scholar 

  4. Ma Q, Zhao J, Xing W, Peng X (2014) J Adv Oxid Technol 17:212

    Google Scholar 

  5. Qi W, Liu W, Liu S, Zhang B, Gu X, Guo X, Su D (2014) ChemCatChem 6(9):2613

    Article  CAS  Google Scholar 

  6. Misono M (1987) Catal Rev Sci Eng 29:269

    Article  CAS  Google Scholar 

  7. Grandstaff DE, Paciolla MD, Sein LTJ (1999) Mater Res Soc Symp Proc 549:249

    Article  CAS  Google Scholar 

  8. Li X, Qin G, Wang Y, Wei W (2014) J Sol-Gel Sci Techn 72(2):405

    Article  CAS  Google Scholar 

  9. Long XL, Wang ZH, Wu SQ, Wu SM, Lv HF, Yuan WK (2014) J Ind Eng Chem 20(1):100

    Article  CAS  Google Scholar 

  10. Chami F, Dermeche L, Saadi A, Rabia C (2013) Appl Petrochem Res 3(1–2):35

    Article  CAS  Google Scholar 

  11. Dong X, Wang D, Li K, Zhen Y, Hu H, Xue G (2014) Mater Res Bull 57:210

    Article  CAS  Google Scholar 

  12. Sawant-Dhuri D, Balasubramanian VV, Ariga K, Park DH, Choy JH, Cha WS, Vinu A (2014) ChemCatChem 6(12):3347

    CAS  Google Scholar 

  13. Misono M (1993) Surf Sci Catal 75:69

    Article  CAS  Google Scholar 

  14. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  15. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S (1997) Nature 389:582

    Article  CAS  Google Scholar 

  16. Odom TW, Huang JL, Kim P, Lieber CM (1998) Nature 391:62

    Article  CAS  Google Scholar 

  17. Qiu J, Wang GJ (2008) Appl Surf Sci 254:5691

    Article  CAS  Google Scholar 

  18. Gong Q, Li Z, Bai X, Li D, Zhao Y, Liang J (2004) Mater Sci Eng A 384:209

    Article  Google Scholar 

  19. Huang Q, Gao L, Liu Y, Sun J (2005) J Mater Chem 151:995

    Google Scholar 

  20. Lin MF, Shyu FL, Chen RB (2000) Phys Rev B 61:14114

    Article  CAS  Google Scholar 

  21. Serp P, Corrias M, Kalck P (2003) Appl Catal A Gen 253:324

    Article  Google Scholar 

  22. Ilnicka AM, Bielanska E, Dobrzynska LL, Bielanski A (2012) Appl Catal A Gen 421–422:91

    Article  Google Scholar 

  23. Timofeeva MN, Matrosowa MM, Il’inich GN, Reshtenko TV, Avdeeva LB, Kvon RI, Chuvilin AL, Paukshtis EA, Likolobov VA (2003) Kinet Catal 44:778

    Article  CAS  Google Scholar 

  24. Bernini R, Coratti A, Fabrizi G, Goggiamani A, Fabrizi G, Goggiamani A (2003) Tetrahedron Lett 44:8991

    Article  CAS  Google Scholar 

  25. Renz M, Meunier B (1999) Eur J Org Chem 1999:737

    Article  Google Scholar 

  26. Strukul G (1998) Angew Chem Int Ed Engl 37:1198

    Article  Google Scholar 

  27. Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature 412:423

    Article  CAS  Google Scholar 

  28. Luo HY, Bui L, Gunther WR, Min E, Román-Leshkov Y (2012) ACS Catal 2:2695

    Article  CAS  Google Scholar 

  29. Li CL, Wang JQ, Yang ZW, Hu ZA, Lei ZQ (2007) Catal Commun 8:1202

    Article  CAS  Google Scholar 

  30. Uyanik M, Ishihara K (2013) ACS Catal 3:513

    Article  CAS  Google Scholar 

  31. Romney DK, Colvin SM, Miller SJ (2014) J Am Chem Soc 136:14019

    Article  CAS  Google Scholar 

  32. Yuan JH, Jin XL, Li N, Chen JR, Miao JG, Zhang QX, Niu L, Song JX (2011) Electrochim Acta 56:10069

    Article  CAS  Google Scholar 

  33. Brahmkhatri V, Patel A (2011) Ind Eng Chem Res 50:13693

    Article  CAS  Google Scholar 

  34. Liu L, Wang B, Du Y, Borgna A (2015) Appl Catal A Gen 489:32

    Article  CAS  Google Scholar 

  35. Corma A, Navarro MT, Renz M (2003) J Catal 219:242

    Article  CAS  Google Scholar 

  36. Ma QG, Xing WZ, Xu JH, Peng XH (2014) Catal Commun 53:5

    Article  CAS  Google Scholar 

  37. Li XZ, Cao R, Lin Q (2014) Catal Commun 63:79

    Article  Google Scholar 

  38. Criegee R (1948) Liebigs Ann Chem 560:127

    Article  CAS  Google Scholar 

  39. Sheldon RA, Wallau M, Arends IWCE, Schuchardt U (1998) Acc Chem Res 31:485

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financial supported by NSFC (21163016, 21174114 and 21202133), Gansu provincial Natural Science Foundation of China (1208RJZA287), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1177). We also thank Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University), Ministry of Education, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwang Yang.

Additional information

Xueqing Xu and Tianjing Li have contributed equally to this paper.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Xu, X., Li, T. et al. Preparation and Catalytic Property of Multi-walled Carbon Nanotubes Supported Keggin-Typed Tungstosilicic Acid for the Baeyer–Villiger Oxidation of Ketones. Catal Lett 145, 1955–1960 (2015). https://doi.org/10.1007/s10562-015-1601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1601-9

Keywords

Navigation