Skip to main content
Log in

Deoxyribonucleic acid scaffolded and encapsulated one-dimensional gadolinium(III) hydroxide nanorods for supercapacitors and oxygen evaluation reaction properties

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Fabricating advanced nanomaterials with multiple functionalities is an intriguing approach to leveraging clean and sustainable energy technologies. The study elucidates the scaffold and encapsulation capabilities of deoxyribonucleic acid (DNA), demonstrating the influence of different DNA concentrations on the structural and electrochemical properties of Gd(OH)3 nanorods. As evidence of concept application, the optimal Gd(OH)3-DNA-60 electrode delivers a specific capacity of 346 C g−1 (576.6 F g−1) at 1 A g−1 and a high rate capability. Interestingly, it provides superior cyclic stability with 98% initial capacity retention after 5000 charge/discharge cycles at 20 A g−1. The Gd(OH)3-DNA-60//activated carbon (AC) asymmetric device delivers the specific capacity of 151 C g−1 (107.8 F g−1) at 1 A g−1 with a cell voltage of 1.4 V. It provides the energy and power densities of 29.3 and 799.6 W kg−1, respectively, and withstands 95% of initial capacity after 10,000 cycles at 10 A g−1. In OER analysis, increasing DNA concentration lowers overpotential, Tafel slope, and resistance while enhancing ECSA characteristics. After the stability studies, the physicochemical experiments confirmed the structural stability of the composite material. The results indicate that the proposed approach is a significant method to tune structures and improve the electrochemical properties of nanomaterials for future energy storage and conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format, they are available from the corresponding author upon reasonable request. Source data are provided in this paper.

References

  1. Lin Z, Li X, Zhang H et al (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392. https://doi.org/10.1039/d3qi00819c

    Article  CAS  Google Scholar 

  2. Shan L, Zhang Y, Xu Y et al (2023) Wood-based hierarchical porous nitrogen-doped carbon/manganese dioxide composite electrode materials for high-rate supercapacitor. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00744-y

    Article  Google Scholar 

  3. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  4. Wang W, Zhou X, Yu L et al (2023) Surface sulfidation of NiCo-layered double-hydroxide nanosheets for flexible all-solid-state fiber-shaped asymmetric supercapacitors. Adv Compos Hybrid Mater 6:1–12. https://doi.org/10.1007/s42114-023-00798-y

    Article  CAS  Google Scholar 

  5. Yuan G, Wan T, BaQais A et al (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon NY. https://doi.org/10.1016/j.carbon.2023.118101

    Article  Google Scholar 

  6. Fan W, Wang Q, Rong K et al (2024) MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nano-Micro Lett. https://doi.org/10.1007/s40820-023-01226-y

    Article  Google Scholar 

  7. Hussain I, Ahmad M, Chen X et al (2022) Glycol-assisted Cu-doped ZnS polyhedron-like structure as binder-free novel electrode materials. J Saudi Chem Soc 26:101510. https://doi.org/10.1016/j.jscs.2022.101510

    Article  CAS  Google Scholar 

  8. Schuldiner S (1954) Hydrogen overvoltage on bright platinum. J Electrochem Soc 101:426. https://doi.org/10.1149/1.2781294

    Article  CAS  Google Scholar 

  9. Kim JS, Kim B, Kim H, Kang K (2018) Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv Energy Mater 8:1–26. https://doi.org/10.1002/aenm.201702774

    Article  CAS  Google Scholar 

  10. Xia BY, Yan Y, Li N et al (2016) A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:1–8. https://doi.org/10.1038/nenergy.2015.6

    Article  CAS  Google Scholar 

  11. Hwang JY, El-Kady MF, Wang Y et al (2015) Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18:57–70. https://doi.org/10.1016/j.nanoen.2015.09.009

    Article  CAS  Google Scholar 

  12. Zhao H, Xia J, Yin D et al (2019) Rare earth incorporated electrode materials for advanced energy storage. Coord Chem Rev 390:32–49. https://doi.org/10.1016/j.ccr.2019.03.011

    Article  CAS  Google Scholar 

  13. Shi X, Cao B, Liu J et al (2021) Rare-earth-based metal–organic frameworks as multifunctional platforms for catalytic conversion. Small 17:1–16. https://doi.org/10.1002/smll.202005371

    Article  CAS  Google Scholar 

  14. Li H, Gao Y, Wang C, Yang G (2015) A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv Energy Mater 5:1–9. https://doi.org/10.1002/aenm.201401767

    Article  CAS  Google Scholar 

  15. Ullah N, Imran M, Liang K et al (2017) Highly dispersed ultra-small Pd nanoparticles on gadolinium hydroxide nanorods for efficient hydrogenation reactions. Nanoscale 9:13800–13807. https://doi.org/10.1039/c7nr05096h

    Article  CAS  PubMed  Google Scholar 

  16. Du G, Van Tendeloo G (2005) Preparation and structure analysis of Gd(OH)3 nanorods. Nanotechnology 16:595–597. https://doi.org/10.1088/0957-4484/16/4/043

    Article  CAS  Google Scholar 

  17. Zhi M, Xiang C, Li J et al (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale 5:72–88. https://doi.org/10.1039/c2nr32040a

    Article  CAS  PubMed  Google Scholar 

  18. Arunachalam S, Kirubasankar B, Pan D et al (2020) Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy Environ 5:259–273. https://doi.org/10.1016/j.gee.2020.07.021

    Article  Google Scholar 

  19. Cai L, Tabata H, Kawai T (2000) Self-assembled DNA networks and their electrical conductivity. Appl Phys Lett 77:3105–3106. https://doi.org/10.1063/1.1323546

    Article  CAS  Google Scholar 

  20. Kwon YW, Lee CH, Choi DH, Il JJ (2009) Materials science of DNA. J Mater Chem 19:1353–1380. https://doi.org/10.1039/b808030e

    Article  CAS  Google Scholar 

  21. Kumaravel S, Kumar MP, Thiruvengetam P et al (2020) Intervening bismuth tungstate with DNA chain assemblies: a perception toward feedstock conversion via photoelectrocatalytic water splitting. Inorg Chem 59:14501–14512. https://doi.org/10.1021/acs.inorgchem.0c02296

    Article  CAS  PubMed  Google Scholar 

  22. Yesuraj J, Kim J, Yang R, Kim K (2022) Dual functionality of dichalcogenide-supported pentagon core-hexagon ring-structured NiCo2O4 nanoplates: an effective hybridization for tuning of a diffused- to a surface-controlled process and boosting of CO2 electrocatalysis. ACS Appl Energy Mater 5:10149–10164. https://doi.org/10.1021/acsaem.2c01880

    Article  CAS  Google Scholar 

  23. Kawashima K, Márquez RA, Son YJ et al (2023) Accurate potentials of Hg/HgO electrodes: practical parameters for reporting alkaline water electrolysis overpotentials. ACS Catal 13:1893–1898. https://doi.org/10.1021/acscatal.2c05655

    Article  CAS  Google Scholar 

  24. Paula A, Marques DA, Longo E et al (2016) Novel Gd(OH)3, GdOOH and Gd2O3 nanorods : microwave-assisted hydrothermal synthesis and optical properties. Mater Res 19(5):1155–1161. https://doi.org/10.1590/1980-5373-MR-2016-0252

    Article  Google Scholar 

  25. Sakthikumar K, Ede SR, Mishra S, Kundu S (2016) Shape-selective synthesis of Sn(MoO4)2 nanomaterials for catalysis and supercapacitor applications. Dalton Trans 45:8897–8915. https://doi.org/10.1039/c6dt00208k

    Article  CAS  PubMed  Google Scholar 

  26. Gupta S, Banaszak A (2021) Detection of DNA bases and environmentally relevant biomolecules and monitoring ssDNA hybridization by noble metal nanoparticles decorated graphene nanosheets as ultrasensitive G-SERS platforms. J Raman Spectrosc 52:930–948. https://doi.org/10.1002/jrs.6087

    Article  CAS  Google Scholar 

  27. Gong Y, Zhang M, Cao G (2015) Chemically anchored NiOx-carbon composite fibers for Li-ion batteries with long cycle-life and enhanced capacity. RSC Adv 5:26521–26529. https://doi.org/10.1039/c5ra01518a

    Article  CAS  Google Scholar 

  28. Yang J, Dahlström C, Edlund H et al (2019) pH-responsive cellulose–chitosan nanocomposite films with slow release of chitosan. Cellulose 26:3763–3776. https://doi.org/10.1007/s10570-019-02357-5

    Article  CAS  Google Scholar 

  29. Prasad CV, Reddy MSP, Rajagopal Reddy V, Park C (2018) Effect of annealing on chemical, structural and electrical properties of Au/Gd2O3/n-GaN heterostructure with a high-k rare-earth oxide interlayer. Appl Surf Sci 427:670–677. https://doi.org/10.1016/j.apsusc.2017.09.016

    Article  CAS  Google Scholar 

  30. Kumaravel S, Karthick K, Sankar SS et al (2021) Shape-selective rhodium nano-huddles on DNA for high efficiency hydrogen evolution reaction in acidic medium. J Mater Chem C 9:1709–1720. https://doi.org/10.1039/d0tc05518b

    Article  CAS  Google Scholar 

  31. Nawawi WI, Nawi MA (2013) Electron scavenger of thin layer carbon coated and nitrogen doped P25 with enhanced photocatalytic activity under visible light fluorescent lamp. J Mol Catal A Chem 374–375:39–45. https://doi.org/10.1016/j.molcata.2013.03.024

    Article  CAS  Google Scholar 

  32. Atuchin VV (2012) Comment on “particle size and structural control of ZnWO4 nanocrystals via Sn2+ doping for tunable optical and visible photocatalytic properties.” J Phys Chem C 116:26106–26107. https://doi.org/10.1021/jp3103996

    Article  CAS  Google Scholar 

  33. Montiel Schneider MG, Rivero PS, Muñoz Medina GA et al (2023) Gd(OH)3 as modifier of iron oxide nanoparticles—insights on the synthesis, characterization and stability. Colloids and Interfaces 7:8. https://doi.org/10.3390/colloids7010008

    Article  CAS  Google Scholar 

  34. Uysal I, Severcan F, Evis Z (2013) Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride. Ceram Int 39:7727–7733. https://doi.org/10.1016/j.ceramint.2013.03.029

    Article  CAS  Google Scholar 

  35. Ede SR, Ramadoss A, Anantharaj S et al (2014) Enhanced catalytic and supercapacitor activities of DNA encapsulated β-MnO2 nanomaterials. Phys Chem Chem Phys 16:21846–21859. https://doi.org/10.1039/c4cp02884h

    Article  CAS  PubMed  Google Scholar 

  36. Karmakar A, Karthick K, Sankar SS et al (2021) Surface decoration of DNA-aided amorphous cobalt hydroxide via Ag+ ions as binder-free electrodes toward electrochemical oxygen evolution reaction. Inorg Chem 60:2680–2693. https://doi.org/10.1021/acs.inorgchem.0c03569

    Article  CAS  PubMed  Google Scholar 

  37. Mohamed HDA, Watson SMD, Horrocks BR, Houlton A (2015) Chemical and electrochemical routes to DNA-templated rhodium nanowires. J Mater Chem C 3:438–446. https://doi.org/10.1039/c4tc02307b

    Article  CAS  Google Scholar 

  38. Sonar PA, Sanjeevagol SG, Manjanna J et al (2022) Electrochemical behavior of cerium (III) hydroxide thin-film electrode in aqueous and non-aqueous electrolyte for supercapacitor applications. J Mater Sci Mater Electron 33:25787–25795. https://doi.org/10.1007/s10854-022-09270-x

    Article  CAS  Google Scholar 

  39. Yang J, Li C, Cheng Z et al (2007) Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3:Eu3+ nanorods and microrods. J Phys Chem C 111:18148–18154. https://doi.org/10.1021/jp0767112

    Article  CAS  Google Scholar 

  40. Li N, Gao F, Hou L, Gao D (2010) DNA-templated rational assembly of BaWO4 nano pair-linear arrays. J Phys Chem C 114(39):16114–16121. https://doi.org/10.1021/jp101292c

    Article  CAS  Google Scholar 

  41. Li F, Bi Z, Kimura H, Li H, Liu L, Xie X, Zhang X, Wang J, Sun X, Ma Z, Du W, Hou C (2023) Energy- and cost-efficient salt-assisted synthesis of nitrogen-doped porous carbon matrix decorated with nickel nanoparticles for superior electromagnetic wave absorption. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00710-8

    Article  Google Scholar 

  42. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu BB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  CAS  Google Scholar 

  43. Liu Y, Jiang SP, Shao Z (2020) Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Mater Today Adv 7:100072. https://doi.org/10.1016/j.mtadv.2020.100072

    Article  Google Scholar 

  44. Hussain I, Ansari MZ, Ahmad M et al (2023) Understanding the diffusion-dominated properties of MOF-derived Ni–Co–Se/C on CuO scaffold electrode using experimental and first principle study. Adv Funct Mater 33:1–9. https://doi.org/10.1002/adfm.202302888

    Article  CAS  Google Scholar 

  45. Hussain I, Ali A, Lamiel C et al (2019) A 3D walking palm-like core-shell CoMoO4 @NiCo2S4 @nickel foam composite for high-performance supercapacitors. Dalt Trans 48:3853–3861. https://doi.org/10.1039/c8dt04045a

    Article  CAS  Google Scholar 

  46. Hussain S, Vikraman D, Sarfraz M et al (2023) Design of XS2 (X = W or Mo)-decorated VS2 hybrid nano-architectures with abundant active edge sites for high-rate asymmetric supercapacitors and hydrogen evolution reactions. Small 19:1–19. https://doi.org/10.1002/smll.202205881

    Article  CAS  Google Scholar 

  47. Vijayakumar S, Nagamuthu S, Ryu KS (2017) CuCo2O4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications. Electrochim Acta 238:99–106. https://doi.org/10.1016/j.electacta.2017.03.178

    Article  CAS  Google Scholar 

  48. Yesuraj J, Lee HO, Pandiyan M, kumar, et al (2022) Bio-engineered hexagon-shaped Co3O4 nanoplates on deoxyribonucleic acid (DNA) scaffold: an efficient electrode material for an asymmetric supercapacitor and electrocatalysis application. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.132499

    Article  Google Scholar 

  49. Zhao C, Zheng W, Wang X et al (2013) Ultrahigh capacitive performance from both Co(OH)2/graphene electrode and K3Fe(CN)6 electrolyte. Sci Rep 3:3–8. https://doi.org/10.1038/srep02986

    Article  Google Scholar 

  50. Sarkar S, Akshaya R, Ghosh S (2020) Nitrogen doped graphene/CuCr2O4 nanocomposites for supercapacitors application: effect of nitrogen doping on coulombic efficiency. Electrochim Acta 332:135368. https://doi.org/10.1016/j.electacta.2019.135368

    Article  CAS  Google Scholar 

  51. Chen S, Xue M, Li Y et al (2015) Porous ZnCo2O4 nanoparticles derived from a new mixed-metal organic framework for supercapacitors. Inorg Chem Front 2:177–183. https://doi.org/10.1039/c4qi00167b

    Article  CAS  Google Scholar 

  52. Yang R, Yesuraj J, Kim K (2023) Self-assembly of two dimensional (2-D) Zn0.5Cu0.5Co2O4 quasi-nanosheets for asymmetric supercapacitor and oxygen evolution reaction applications. J Power Sources 586:233642. https://doi.org/10.1016/j.jpowsour.2023.233642

    Article  CAS  Google Scholar 

  53. Yesuraj J, Vajravijayan S, Yang R et al (2022) Self-assembly of hausmannite Mn3O4 triangular structures on cocosin protein scaffolds for high energy density symmetric supercapacitor application. Langmuir 38:2928–2941. https://doi.org/10.1021/acs.langmuir.1c03400

    Article  CAS  PubMed  Google Scholar 

  54. Shamsi MH, Kraatz HB (2013) Interactions of metal ions with DNA and some applications. J Inorg Organomet Polym Mater 23:4–23. https://doi.org/10.1007/s10904-012-9694-8

    Article  CAS  Google Scholar 

  55. Lai C, Guo Y, Zhao H et al (2022) High-performance double “ion-buffering reservoirs” of asymmetric supercapacitors enabled by battery-type hierarchical porous sandwich-like Co3O4 and 3D graphene aerogels. Adv Compos Hybrid Mater 5:2557–2574. https://doi.org/10.1007/s42114-022-00532-0

    Article  CAS  Google Scholar 

  56. Teli AM, Bhat TS, Beknalkar SA, Mane SM, Chaudhary LS, Patil DS, Pawar SA, Efstathiadis H, Shin JC (2022) Bismuth manganese oxide based electrodes for asymmetric coin cell supercapacitor. Chem Eng J 430

    Article  CAS  Google Scholar 

  57. Acharya D, Ko TH, Bhattarai RM et al (2023) Double-phase engineering of cobalt sulfide/oxyhydroxide on metal-organic frameworks derived iron carbide-integrated porous carbon nanofibers for asymmetric supercapacitors. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-023-00755-9

    Article  Google Scholar 

  58. Sun M, Li Z, Li H et al (2020) Mesoporous Zr-doped CeO2 nanostructures as superior supercapacitor electrode with significantly enhanced specific capacity and excellent cycling stability. Electrochim Acta 331:1–10. https://doi.org/10.1016/j.electacta.2019.135366

    Article  CAS  Google Scholar 

  59. Majumder M, Choudhary RB, Thakur AK et al (2018) Rare earth metal oxide (RE2O3; RE = Nd, Gd, and Yb) incorporated polyindole composites: gravimetric and volumetric capacitive performance for supercapacitor applications. New J Chem 42:5295–5308. https://doi.org/10.1039/c8nj00221e

    Article  CAS  Google Scholar 

  60. Xie H, Mao L, Mao J (2021) Structural evolution of Ce[Fe(CN)6] and derived porous Fe-CeO2 with high performance for supercapacitor. Chem Eng J 421:127826. https://doi.org/10.1016/j.cej.2020.127826

    Article  CAS  Google Scholar 

  61. Mazloum-Ardakani M, Sabaghian F, Yavari M et al (2020) Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@CeO2 core-shell. J Alloys Compd 819:152949. https://doi.org/10.1016/j.jallcom.2019.152949

    Article  CAS  Google Scholar 

  62. Chandra Sekhar M, Kumar NS, Asif M, Vattikuti SVP, Shim J (2023) Enhancing electrochemical performance with g-C3N4/CeO2 binary electrode material. Molecules 28:2489. https://doi.org/10.3390/molecules28062489

    Article  CAS  PubMed  Google Scholar 

  63. Shanmugavani A, Selvan RK (2016) Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3. Electrochim Acta 189:283–294. https://doi.org/10.1016/j.electacta.2015.12.043

    Article  CAS  Google Scholar 

  64. Yi H, Wang H, Jing Y et al (2015) Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life. J Power Sources 285:281–290. https://doi.org/10.1016/j.jpowsour.2015.03.106

    Article  CAS  Google Scholar 

  65. Wang DW, Li F, Cheng HM (2008) Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. J Power Sources 185:1563–1568. https://doi.org/10.1016/j.jpowsour.2008.08.032

    Article  CAS  Google Scholar 

  66. Liu X, Jiang J, Ai L (2015) Non-precious cobalt oxalate microstructures as highly efficient electrocatalysts for oxygen evolution reaction. J Mater Chem A 3:9707–9713. https://doi.org/10.1039/c5ta01012h

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (2019R1D1A3A03103616).

Author information

Authors and Affiliations

Authors

Contributions

Johnbosco Yesuraj: investigation, resources, experiment, formal analysis, writing—original draft, and visualization. Jinsun Kim: conceptualization, validation, and formal analysis. Rui Yang: material analysis. Kibum Kim: conceptualization, investigation, writing—review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Kibum Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3698 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yesuraj, J., Kim, J., Yang, R. et al. Deoxyribonucleic acid scaffolded and encapsulated one-dimensional gadolinium(III) hydroxide nanorods for supercapacitors and oxygen evaluation reaction properties. Adv Compos Hybrid Mater 7, 69 (2024). https://doi.org/10.1007/s42114-024-00881-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00881-y

Keywords

Navigation