Skip to main content
Log in

Modeling van der Waals Interactions in Zeolites with Periodic DFT: Physisorption of n-Alkanes in ZSM-22

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Structure and physisorption energy of alkanes in ZSM-22 are investigated using periodic density functional theory employing the new BEEF-vdW functional. Good agreement with experimental data is obtained, illustrating successful modeling of the van der Waals forces responsible for the adsorption. All calculations were performed on a single level of theory, and the method therefore provides an attractive possibility for an accurate theoretical description of the confinement effects observed in zeolite catalysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yilmaz B, Trukhan N, Müller U (2012) Chin J Catal 33:3

    Article  CAS  Google Scholar 

  2. Wang Z, Yu J, Xu R (2012) Chem Soc Rev 41:1729

    Article  CAS  Google Scholar 

  3. Smit B, Maesen TLM (2008) Nature 451:671

    Article  CAS  Google Scholar 

  4. Gounder R, Iglesia E (2012) Acc Chem Res 45:229

    Article  CAS  Google Scholar 

  5. Sherrill CD (2010) J Chem Phys 132:110902

    Article  Google Scholar 

  6. Patton DC, Pederson MR (1998) Int J Quantum Chem 69:619

    Article  CAS  Google Scholar 

  7. Zhang Y, Pan W, Yang W (1997) J Chem Phys 107:7921

    Article  CAS  Google Scholar 

  8. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  9. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  10. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  11. Rydberg H, Dion M, Jacobson N, Schröder E, Hyldgaard P, Simak SI, Langreth DC, Lundqvist BI (2003) Phys Rev Lett 91:126402

    Article  CAS  Google Scholar 

  12. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  13. Grimme S, Antony J, Schwabe T, Muck-Lichtenfeld C (2007) Org Biomol Chem 5:741

    Article  CAS  Google Scholar 

  14. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  15. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  16. Gräfenstein J, Cremer D (2009) J Chem Phys 130:124105

    Article  Google Scholar 

  17. Hansen N, Kerber T, Sauer J, Bell AT, Keil FJ (2010) J Am Chem Soc 132:11525

    Article  CAS  Google Scholar 

  18. Tuma C, Kerber T, Sauer J (2010) Angew Chem Int Ed 49:4678

    Article  CAS  Google Scholar 

  19. Svelle S, Tuma C, Rozanska X, Kerber T, Sauer J (2009) J Am Chem Soc 131:816

    Article  CAS  Google Scholar 

  20. Tuma C, Sauer J (2004) Chem Phys Lett 387:388

    Article  CAS  Google Scholar 

  21. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  22. Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) J Phys Chem C 116:5499

    Article  Google Scholar 

  23. Hemelsoet K, Nollet A, Van Speybroeck V, Waroquier M (2011) Chem Eur J 17:9083

    Article  CAS  Google Scholar 

  24. Van Speybroeck V, Van der Mynsbrugge J, Vandichel M, Hemelsoet K, Lesthaeghe D, Ghysels A, Marin GB, Waroquier M (2010) J Am Chem Soc 133:888

    Article  Google Scholar 

  25. Vandichel M, Lesthaeghe D, Mynsbrugge JVd, Waroquier M, Van Speybroeck V (2010) J Catal 271:67

    Article  CAS  Google Scholar 

  26. Mullen GM, Janik MJ (2011) ACS Catal 1:105

    Article  CAS  Google Scholar 

  27. Zazza C, Sanna N, Rutigliano M, Cacciatore M, Palma A (2011) Comput Theor Chem 967:191

    Article  CAS  Google Scholar 

  28. Nguyen CM, Reyniers M-F, Marin GB (2010) Phys Chem Chem Phys 12:9481

    Article  CAS  Google Scholar 

  29. Kerber T, Sierka M, Sauer J (2008) J Comput Chem 29:2088

    Article  CAS  Google Scholar 

  30. Tuma C, Sauer J (2006) Phys Chem Chem Phys 8:3955

    Article  CAS  Google Scholar 

  31. Wellendorff J, Lundgaard KT, Møgelhøj A, Petzold V, Nørskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149

    Google Scholar 

  32. Lee K, Murray ED, Kong L, Lundqvist BI, Langreth DC (2010) Phys Rev B 82:081101

    Article  Google Scholar 

  33. Román-Pérez G, Soler JM (2009) Phys Rev Lett 103:096102

    Article  Google Scholar 

  34. Denayer JF, Baron GV, Martens JA, Jacobs PA (1998) J Phys Chem B 102:3077

    Article  CAS  Google Scholar 

  35. Ocakoglu RA, Denayer JFM, Marin GB, Martens JA, Baron GV (2003) J Phys Chem B 107:398

    Article  CAS  Google Scholar 

  36. Goltl F, Hafner J (2011) J Chem Phys 134:064102

    Article  Google Scholar 

  37. De Moor BA, Reyniers M-F, Gobin OC, Lercher JA, Marin GB (2011) J Phys Chem C 115:1204

    Article  Google Scholar 

  38. De Moor BA, Reyniers M-F, Marin GB (2009) Phys Chem Chem Phys 11:2939

    Article  Google Scholar 

  39. De Moor BA, Reyniers M-F, Sierka M, Sauer J, Marin GB (2008) J Phys Chem C 112:11796

    Article  Google Scholar 

  40. Pantu P, Boekfa B, Limtrakul J (2007) J Mol Catal A Chem 277:171

    Article  CAS  Google Scholar 

  41. Dubbeldam D, Calero S, Vlugt TJH, Krishna R, Maesen TLM, Smit B (2004) J Phys Chem B 108:12301

    Article  CAS  Google Scholar 

  42. Pascual P, Ungerer P, Tavitian B, Pernot P, Boutin A (2003) Phys Chem Chem Phys 5:3684

    Article  CAS  Google Scholar 

  43. Benco L, Hafner J, Hutschka F, Toulhoat H (2003) J Phys Chem B 107:9756

    Article  CAS  Google Scholar 

  44. Benco L, Demuth T, Hafner J, Hutschka F, Toulhoat H (2001) J Chem Phys 114:6327

    Article  CAS  Google Scholar 

  45. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, DuŃak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm-Møller J, Strange M, Tritsaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22:253202

    Article  CAS  Google Scholar 

  46. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109

    Article  Google Scholar 

  47. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  48. Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56

    Article  CAS  Google Scholar 

  49. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  50. Moses PG, Nørskov JK (2012) J Catal, Submitted

  51. Marler B (1987) Zeolites 7:393

    Article  CAS  Google Scholar 

  52. Wellendorff J, Bligaard T (2011) Top Catal 54:1143

    Article  CAS  Google Scholar 

  53. Klimeš J, Bowler DR, Michaelides A (2011) Phys Rev B 83:195131

    Article  Google Scholar 

  54. Eder F, Stockenhuber M, Lercher JA (1997) J Phys Chem B 101:5414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work supported in part by the US. Department of Energy under contract number DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens K. Nørskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brogaard, R.Y., Moses, P.G. & Nørskov, J.K. Modeling van der Waals Interactions in Zeolites with Periodic DFT: Physisorption of n-Alkanes in ZSM-22. Catal Lett 142, 1057–1060 (2012). https://doi.org/10.1007/s10562-012-0870-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0870-9

Keywords

Navigation