Skip to main content
Log in

Isolation and characterization of mesenchymal stem cells from chicken bone marrow

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The bone marrow mesenchymal stem cells (BMSCs) are multipotent stem cells, which can differentiate in vitro into many cell types. However, the vast majority of experimental materials were obtained from human, mouse, rabbit and other mammals, but rarely in poultry. So, in this study, Thirty- to sixty-day old chicken was chosen as experimental animal, to isolate and characterize BMSCs from them. To investigate the biological characteristics of chicken BMSCs, immunofluorescence and RT-PCR were used to detect the characteristic surface markers of BMSCs. Growth curves were drawn in accordance with cell numbers. To assess the differentiation capacity of the BMSCs, cells were induced to differentiate into osteoblasts, adipocytes, and endothelial cells. The surface markers of BMSCs, CD29, CD44, CD31, CD34, CD71 and CD73, were detected by immunofluorescence and RT-PCR assays. The growth curves of different passages were all typically sigmoidal. Karyotype analysis showed that these in vitro cultured cells were genetically stable. In addition, BMSCs were successfully induced to differentiate into osteoblasts, adipocytes, and endothelial cells. The results suggest that the BMSCs isolated from chicken possess similar biological characteristics with those separated from other species, and their multi-lineage differentiation potentiality herald a probable application for cellular transplant therapy in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baran SW, Ware CB (2007) Cryopreservation of rhesus macaque embryonic stem cells. Stem Cells Dev 16:339–344

    Article  PubMed  CAS  Google Scholar 

  • Beck K, Chan VC, Shenoy N, Kirkpatrick A, Ramshaw JA, Brodsky B (2000) Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Proc Natl Acad Sci USA 97:4273–4278

    Article  PubMed  CAS  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2005) Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 319:243–253

    Article  PubMed  Google Scholar 

  • Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    Article  PubMed  CAS  Google Scholar 

  • Csaki C, Matis U, Mobasheri A, Ye H, Shakibaei M (2007) Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol 128:507–520

    Article  PubMed  CAS  Google Scholar 

  • Csaki C, Matis U, Mobasheri A, Shakibaei M (2009) Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochem Cell Biol 131:251–266

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272

    PubMed  CAS  Google Scholar 

  • Fujita T, Izumo N, Fukuyama R, Meguro T, Nakamuta H, Kohno T, Koida M (2001) Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfa1 in bone cells. Biochem Biophys Res Commun 280:348–352

    Article  PubMed  CAS  Google Scholar 

  • Gu S, Xing C, Han J, Tso MO, Hong J (2009) Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Mol Vis 15:99–107

    PubMed  CAS  Google Scholar 

  • Hanada K, Dennis JE, Caplan AI (1997) Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Mineral Res 12:1606–1614

    Article  CAS  Google Scholar 

  • Haynesworth SE, Baber MA, Caplan AI (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol 166:585–592

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA 2nd, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314

    Article  PubMed  CAS  Google Scholar 

  • Moretti A, Weig HJ, Ott T, Seyfarth M, Holthoff HP, Grewe D, Gillitzer A, Bott-Flugel L, Schomig A, Ungerer M, Laugwitz KL (2002) Essential myosin light chain as a target for caspase-3 in failing myocardium. Proc Natl Acad Sci USA 99:11860–11865

    Article  PubMed  CAS  Google Scholar 

  • Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C (2004) Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229

    Article  PubMed  Google Scholar 

  • Spadaccio C, Pollari F, Casacalenda A, Alfano G, Genovese J, Covino E, Chello M (2010) Atorvastatin increases the number of endothelial progenitor cells after cardiac surgery: a randomized control study. J Cardiovasc Pharmacol 55:30–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Agriculture of China for Transgenic Research Program (2011ZX08009-003-006, 2011ZX08012-002-06), the project of National Infrastructure of Animal Germplasm Resources (2012 year) and the central level, scientific research institutes for R & D special fund business (2011cj-9, 2012zl072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghai Zhang or Weijun Guan.

Additional information

Chunyu Bai and Lingling Hou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, C., Hou, L., Ma, Y. et al. Isolation and characterization of mesenchymal stem cells from chicken bone marrow. Cell Tissue Bank 14, 437–451 (2013). https://doi.org/10.1007/s10561-012-9347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-012-9347-8

Keywords

Navigation