Skip to main content
Log in

Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Musculoskeletal diseases with osteochondrotic articular cartilage defects, such as osteoarthritis, are an increasing problem for humans and companion animals which necessitates the development of novel and improved therapeutic strategies. Canine mesenchymal stem cells (cMSCs) offer significant promise as a multipotent source for cell-based therapies and could form the basis for the differentiation and cultivation of tissue grafts to replace damaged tissue. However, no comprehensive analysis has been undertaken to characterize the ultrastructure of in vitro differentiated cMSCs. The main goal of this paper was to focus on cMSCs and to analyse their differentiation capacity. To achieve this aim, bone marrow cMSCs from three canine patients were isolated, expanded in monolayer culture and characterized with respect to their ability for osteogenic, adipogenic and chondrogenic differentiation capacities. cMSCs showed proliferative potential and were capable of osteogenic, adipogenic and chondrogenic differentiation. cMSCs treated with the osteogenic induction medium differentiated into osteoblasts, produced typical bone matrix components, β1-integrins and upregulated the osteogenic specific transcription factor Cbfa-1. cMSCs treated with the adipogenic induction medium showed typical adipocyte morphology, produced adiponectin, collagen type I and β1-integrins, and upregulated the adipogenic specific transcription factor PPAR-γ. cMSCs treated with the chondrogenic induction medium exhibited a round to oval shape, produced a cartilage-specific extracellular matrix, β1-integrins and upregulated the chondrogenic specific transcription factor Sox9. These results demonstrate, at the biochemical, morphological and ultrastructural levels, the multipotency of cMSCs and thus highlight their potential therapeutic value for cell-based tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexanian AR, Sieber-Blum M (2003) Differentiating adult hippocampal stem cells into neural crest derivatives. Neuroscience 118:1–5

    Article  PubMed  CAS  Google Scholar 

  • Baylink DJ (1983) Glucocorticoid-induced osteoporosis. N Engl J Med 309:306–308

    Article  PubMed  CAS  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2005) Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 319:243–253

    Article  PubMed  Google Scholar 

  • Bottai D, Fiocco R, Gelain F, Defilippis L, Galli R, Gritti A, Vescovi LA (2003) Neural stem cells in the adult nervous system. J Hematother Stem Cell Res 12:655–670

    Article  PubMed  Google Scholar 

  • Buck CA, Horwitz AF (1987) Integrin, a transmembrane glycoprotein complex mediating cell-substratum adhesion. J Cell Sci 8:231–250

    CAS  Google Scholar 

  • Cancedda R, Descalzi Cancedda F, Castagnola P (1995) Chondrocyte differentiation. Int Rev Cytol 159:265–358

    PubMed  CAS  Google Scholar 

  • Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22:81–91

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI, Bruder SP (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 7:259–264

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73

    Article  PubMed  CAS  Google Scholar 

  • Derfoul A, Perkins GL, Hall DJ, Tuan RS (2006) Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Drissi H, Chen M, Chen D, Zuscik MJ, Schwarz EM, O’Keefe RJ (2005) Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J Cell Biochem 95:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Ducy P (2000) Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 219:461–471

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Fortier LA, Nixon AJ, Williams J, Cable CS (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 59:1182–1187

    PubMed  CAS  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778

    Article  PubMed  CAS  Google Scholar 

  • Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211:27–35

    Article  PubMed  CAS  Google Scholar 

  • Gregoire FM (2001) Adipocyte differentiation: from fibroblast to endocrine cell. Exp Biol Med (Maywood) 226:997–1002

    CAS  Google Scholar 

  • Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    PubMed  CAS  Google Scholar 

  • Grigoriadis AE, Heersche JN, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106:2139–2151

    Article  PubMed  CAS  Google Scholar 

  • Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ, Wenstrup RJ (2004) Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res 22:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  PubMed  CAS  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  PubMed  CAS  Google Scholar 

  • Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Takahashi N (2002) Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis 8:147–159

    Article  PubMed  CAS  Google Scholar 

  • Lazar MA (2002) Becoming fat. Genes Dev 16:1–5

    Article  PubMed  CAS  Google Scholar 

  • Lee EH, Hui JH (2006) The potential of stem cells in orthopaedic surgery. J Bone Joint Surg 88:841–851

    Article  CAS  Google Scholar 

  • Leo AJ, Grande DA (2006) Mesenchymal stem cells in tissue engineering. Cells Tissues Organs 183:112–122

    Article  PubMed  CAS  Google Scholar 

  • Mageed AS, Pietryga DW, DeHeer DH, West RA (2007) Isolation of large numbers of mesenchymal stem cells from the washings of bone marrow collection bags: characterization of fresh mesenchymal stem cells. Transplantation 83:1019–1026

    Article  PubMed  Google Scholar 

  • Majumdar MK, Banks V, Peluso DP, Morris EA (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185:98–106

    Article  PubMed  CAS  Google Scholar 

  • Mareddy S, Crawford R, Brooke G, Xiao Y (2007) Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng 13:819–829

    Article  PubMed  CAS  Google Scholar 

  • Moshage H, Casini A, Lieber CS (1990) Acetaldehyde selectively stimulates collagen production in cultured rat liver fat-storing cells but not in hepatocytes. Hepatology (Baltimore, Md.) 12:511–518

    CAS  Google Scholar 

  • Owen M, Friedenstein AJ (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 136:42–60

    PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Ringe J, Kaps C, Schmitt B, Buscher K, Bartel J, Smolian H, Schultz O, Burmester GR, Haupl T, Sittinger M (2002) Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res 307:321–327

    Article  PubMed  CAS  Google Scholar 

  • Sekiya I, Koopman P, Tsuji K, Mertin S, Harley V, Yamada Y, Shinomiya K, Nifuji A, Noda M (2001) Dexamethasone enhances SOX9 expression in chondrocytes. J Endocrinol 169:573–579

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M. (1998) Inhibition of chondrogenesis by integrin antibody in vitro. Exp Cell Res 240:95–106

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, Merker HJ (1999) Beta1-integrins in the cartilage matrix. Cell Tissue Res 296:565–573

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, Schroter-Kermani C, Merker HJ (1993) Matrix changes during long-term cultivation of cartilage (organoid or high-density cultures). Histol Histopathol 8:463–470

    PubMed  CAS  Google Scholar 

  • Shakibaei M, Zimmermann B, Merker HJ (1995) Changes in integrin expression during chondrogenesis in vitro: an immunomorphological study. J Histochem Cytochem 43:1061–1069

    PubMed  CAS  Google Scholar 

  • Shakibaei M, De Souza P, Merker HJ (1997) Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int 21:115–125

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, John T, De Souza P, Rahmanzadeh R, Merker HJ (1999) Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem J 342(Pt 3):615–623

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, Schulze-Tanzil G, de Souza P, John T, Rahmanzadeh M, Rahmanzadeh R, Merker HJ (2001) Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem 276:13289–13294

    Article  PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA (1980) Hemopoietic stem cell differentiation. Biochim Biophys Acta 605:431–459

    PubMed  CAS  Google Scholar 

  • Tuan RS (2006) Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis Rheum 54:3075–3078

    Article  PubMed  CAS  Google Scholar 

  • Vidal-Puig AJ, Considine RV, Jimenez-Linan M, Werman A, Pories WJ, Caro JF, Flier JS (1997) Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 99:2416–2422

    PubMed  CAS  Google Scholar 

  • Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F (2003) Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop Relat Res 412:196–212

    Article  PubMed  Google Scholar 

  • Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65:22–26

    PubMed  CAS  Google Scholar 

  • Zhou S, Eid K, Glowacki J (2004) Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 19:463–470

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Karoline Fischer for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shakibaei.

Additional information

The research was conducted in part for the doctoral thesis of Han Ye to be submitted to Fachbereich Humanmedizin, Institut of Anatomy, Ludwig-Maximilians University Munich, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csaki, C., Matis, U., Mobasheri, A. et al. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol 128, 507–520 (2007). https://doi.org/10.1007/s00418-007-0337-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-007-0337-z

Keywords

Navigation