Skip to main content
Log in

Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Tissue engineering of bone grafts with osteogenic progenitor cells such as adult mesenchymal stem cells (MSC) represents a promising strategy for the treatment of large bone defects. The aim of this experimental study was to evaluate the osteogenic potential of primary osteoblasts on MSCs in co-culture at different ratios. The co-cultures were treated with or without a specific osteogenic induction medium in monolayer and high density cultures. In monolayer co-cultures, MSCs and osteoblasts actively searched for cell–cell contact leading to cell proliferation and only in treated monolayer co-cultures osteogenesis was observed. Ultrastructural evaluation of high density co-cultures using electron microscopy demonstrated osteogenesis with no significant difference between treated or untreated co-cultures. Immunoblotting confirmed expression of collagen type I, β1-Integrin, the osteogenic-specific transcription factor Cbfa-1 and induction of the MAPKinase pathway (Shc, Erk1/2) in both treated and untreated co-cultures. Although treatment with the induction medium enhanced osteogenesis in the co-cultures compared to untreated co-cultures, the quality of osteogenesis was proportional to the quantity of osteoblasts in the co-cultures. Fifty percent osteoblasts in the co-cultures markedly increased osteogenesis; even the presence of ten percent osteoblasts in the co-culture strongly promoted osteogenesis. This data leads us to conclude that co-culture of MSCs with osteoblasts combined with the three-dimensional environment of the high density culture strongly promotes osteogenesis and stabilizes the osteogenic potential of MSCs. This approach may prove to be of practical benefit in future tissue engineering and regenerative medicine research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahrens M, Ankenbauer T, Schroder D, Hollnagel A, Mayer H, Gross G (1993) Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol 12:871–880

    PubMed  CAS  Google Scholar 

  • Alexanian AR, Sieber-Blum M (2003) Differentiating adult hippocampal stem cells into neural crest derivatives. Neuroscience 118:1–5

    Article  PubMed  CAS  Google Scholar 

  • Ball SG, Shuttleworth AC, Kielty CM (2004) Direct cell contact influences bone marrow mesenchymal stem cell fate. The Int J Biochem Cell Biol 36:714–727

    Article  CAS  Google Scholar 

  • Beris AE, Lykissas MG, Papageorgiou CD, Georgoulis AD (2005) Advances in articular cartilage repair. Injury 36(Suppl 4):S14–S23

    Article  PubMed  Google Scholar 

  • Csaki C, Matis U, Mobasheri A, Ye H, Shakibaei M (2007) Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol 128:507–520

    Article  PubMed  CAS  Google Scholar 

  • Czitrom AA, Langer F, McKee N, Gross AE (1986) Bone and cartilage allotransplantation. A review of 14 years of research and clinical studies. Clin Orthop Relat Res:141–145

  • Ducy P (2000) Cbfa1: a molecular switch in osteoblast biology. Dev Dyn 219:461–471

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Geoffroy V, Karsenty G (1996) Study of osteoblast-specific expression of one mouse osteocalcin gene: characterization of the factor binding to OSE2. Connect Tissue Res 35:7–14

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  • Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • Gangji V, Hauzeur JP (2005) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg Am 87(Suppl 1):106–112

    Article  PubMed  Google Scholar 

  • Gangji V, Toungouz M, Hauzeur JP (2005) Stem cell therapy for osteonecrosis of the femoral head. Expert Opin Biol Ther 5:437–442

    Article  PubMed  CAS  Google Scholar 

  • Gerstenfeld LC, Cruceta J, Shea CM, Sampath K, Barnes GL, Einhorn TA (2002) Chondrocytes provide morphogenic signals that selectively induce osteogenic differentiation of mesenchymal stem cells. J Bone Miner Res 17:221–230

    Article  PubMed  CAS  Google Scholar 

  • Gerstenfeld LC, Barnes GL, Shea CM, Einhorn TA (2003) Osteogenic differentiation is selectively promoted by morphogenetic signals from chondrocytes and synergized by a nutrient rich growth environment. Connect Tissue Res 44(Suppl 1):85–91

    Article  PubMed  CAS  Google Scholar 

  • Gredinger E, Gerber AN, Tamir Y, Tapscott SJ, Bengal E (1998) Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J Biol Chem 273:10436–10444

    Article  PubMed  CAS  Google Scholar 

  • Hangody L, Fules P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg A 85(Suppl 2):25–32

    Google Scholar 

  • Heino TJ, Hentunen TA, Vaananen HK (2004) Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res 294:458–468

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF (2000) Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem 275:9645–9652

    Article  PubMed  CAS  Google Scholar 

  • Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  PubMed  CAS  Google Scholar 

  • Kajiwara R, Ishida O, Kawasaki K, Adachi N, Yasunaga Y, Ochi M (2005) Effective repair of a fresh osteochondral defect in the rabbit knee joint by articulated joint distraction following subchondral drilling. J Orthop Res 23:909–915

    Article  PubMed  Google Scholar 

  • Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2007) Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem 101:1266–1277

    Article  PubMed  CAS  Google Scholar 

  • Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka H, Omura S, Suda T (1990) The non-osteogenic mouse pluripotent cell line, C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human bone morphogenetic protein-2. Biochem Biophys Res Commun 172:295–299

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Lee JH, Suh H (2003) Interaction of mesenchymal stem cells and osteoblasts for in vitro osteogenesis. Yonsei Med J 44:187–197

    PubMed  Google Scholar 

  • Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683

    Article  PubMed  CAS  Google Scholar 

  • Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    Article  PubMed  CAS  Google Scholar 

  • Lowy DR, Willumsen BM (1993) Function and regulation of ras. Annu Rev Biochem 62:851–891

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie TC, Flake AW (2001a) Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis 27:601–604

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie TC, Flake AW (2001b) Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy 3:403–405

    Article  PubMed  CAS  Google Scholar 

  • Marco F, Lopez-Oliva F, Fernandez Fernandez-Arroyo JM, de Pedro JA, Perez AJ, Leon C, Lopez-Duran L (1993) Osteochondral allografts for osteochondritis dissecans and osteonecrosis of the femoral condyles. Int Orthop 17:104–108

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet 22:260–264

    Article  PubMed  CAS  Google Scholar 

  • Meyers MH, Jones RE, Bucholz RW, Wenger DR (1983) Fresh autogenous grafts and osteochondral allografts for the treatment of segmental collapse in osteonecrosis of the hip. Clin Orthop Relat Res:107–112

  • Mikic B, van der Meulen MC, Kingsley DM, Carter DR (1995) Long bone geometry and strength in adult BMP-5 deficient mice. Bone 16:445–454

    PubMed  CAS  Google Scholar 

  • Moioli EK, Clark PA, Sumner DR, Mao JJ (2007) Autologous stem cell regeneration in craniosynostosis. Bone 42:332–340

    Article  PubMed  Google Scholar 

  • Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS (2002) Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 20:1060–1069

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Qu CQ, Zhang GH, Zhang LJ, Yang GS (2007) Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells. In Vitro Cell Dev Biol Anim 43:95–100

    Article  PubMed  CAS  Google Scholar 

  • Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA (2006) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem cells (Dayton Ohio) 24:707–716

    Article  CAS  Google Scholar 

  • Riikonen T, Westermarck J, Koivisto L, Broberg A, Kahari VM, Heino J (1995) Integrin alpha 2 beta 1 is a positive regulator of collagenase (MMP-1) and collagen alpha 1(I) gene expression. J Biol Chem 270:13548–13552

    Article  PubMed  CAS  Google Scholar 

  • Ross N, Tacconi L, Miles JB (2000) Heterotopic bone formation causing recurrent donor site pain following iliac crest bone harvesting. Br J Neurosurg 14:476–479

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Tanzil G, de Souza P, Merker HJ, Shakibaei M (2001) Co-localization of integrins and matrix metalloproteinases in the extracellular matrix of chondrocyte cultures. Histol Histopathol 16:1081–1089

    PubMed  CAS  Google Scholar 

  • Schulze-Tanzil G, Mobasheri A, de Souza P, John T, Shakibaei M (2004) Loss of chondrogenic potential in dedifferentiated chondrocytes correlates with deficient Shc-Erk interaction and apoptosis. Osteoarthritis Cartilage 12:448–458

    Article  PubMed  Google Scholar 

  • Shakibaei M (1995) Integrin expression on epiphyseal mouse chondrocytes in monolayer culture. Histol Histopathol 10:339–349

    PubMed  CAS  Google Scholar 

  • Shakibaei M (1998) Inhibition of chondrogenesis by integrin antibody in vitro. Exp Cell Res 240:95–106

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, Schroter-Kermani C, Merker HJ (1993) Matrix changes during long-term cultivation of cartilage (organoid or high-density cultures). Histol Histopathol 8:463–470

    PubMed  CAS  Google Scholar 

  • Shakibaei M, Zimmermann B, Merker HJ (1995) Changes in integrin expression during chondrogenesis in vitro: an immunomorphological study. J Histochem Cytochem 43:1061–1069

    PubMed  CAS  Google Scholar 

  • Shakibaei M, De Souza P, Merker HJ (1997) Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int 21:115–125

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, John T, De Souza P, Rahmanzadeh R, Merker HJ (1999) Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor. Biochem J 342(Pt 3):615–623

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, Schulze-Tanzil G, de Souza P, John T, Rahmanzadeh M, Rahmanzadeh R, Merker HJ (2001) Inhibition of mitogen-activated protein kinase kinase induces apoptosis of human chondrocytes. J Biol Chem 276:13289–13294

    Article  PubMed  CAS  Google Scholar 

  • Shakibaei M, Seifarth C, John T, Rahmanzadeh M, Mobasheri A (2006) Igf-I extends the chondrogenic potential of human articular chondrocytes in vitro: molecular association between Sox9 and Erk1/2. Biochem Pharmacol 72:1382–1395

    Article  PubMed  CAS  Google Scholar 

  • Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139

    Article  PubMed  Google Scholar 

  • Smith SM, Crowe DL, Lee MK (2006) beta1 integrins modulate p66ShcA expression and EGF-induced MAP kinase activation in fetal lung cells. Biochem Biophys Res Commun 342:909–918

    Article  PubMed  CAS  Google Scholar 

  • Song L, Young NJ, Webb NE, Tuan RS (2005) Origin and characterization of multipotential mesenchymal stem cells derived from adult human trabecular bone. Stem Cells Dev 14:712–721

    Article  PubMed  CAS  Google Scholar 

  • Sottile V, Halleux C, Bassilana F, Keller H, Seuwen K (2002) Stem cell characteristics of human trabecular bone-derived cells. Bone 30:699–704

    Article  PubMed  CAS  Google Scholar 

  • Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG (1996) The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87:733–743

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Akamatsu H, Hasegawa S, Yamada T, Nakata S, Ohkuma M, Miyachi E, Marunouchi T, Matsunaga K (2007) Isolation of multipotent stem cells from mouse adipose tissue. J Dermatol Sci 48:43–52

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Karoline Fischer for her excellent technical assistance. The additional support of Ms. Simone Nebrich is also acknowledged. This work was supported in part by the Friedrich Bauer Stiftung, Munich, Germany.

Conflict of interest statement

All authors declare that they have no conflict of interest with other people or organisations that could inappropriately influence the content and scientific integrity of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shakibaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csaki, C., Matis, U., Mobasheri, A. et al. Co-culture of canine mesenchymal stem cells with primary bone-derived osteoblasts promotes osteogenic differentiation. Histochem Cell Biol 131, 251–266 (2009). https://doi.org/10.1007/s00418-008-0524-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-008-0524-6

Keywords

Navigation