Skip to main content
Log in

Deviance Detection Based on Regularity Encoding Along the Auditory Hierarchy: Electrophysiological Evidence in Humans

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100–200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20–30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding—rather than on refractoriness—occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alain C, Woods DL, Ogawa KH (1994) Brain indices of automatic pattern processing. Neuroreport 6:140–144

    Article  CAS  PubMed  Google Scholar 

  • Alho K, Grimm S, Mateo-León S, Costa-Faidella J, Escera C (2012) Early processing of pitch in the human auditory system. Eur J Neurosci 36:2972–2978

    Article  PubMed  Google Scholar 

  • Althen H, Grimm S, Escera C (2011) Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS One 6(12):e28522. doi:10.1371/journal.pone.0028522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Althen H, Grimm S, Escera C (2013) Simple and complex acoustic regularities are encoded at different levels of the auditory hierarchy. Eur J Neurosci. doi:10.1111/ejn.12346

  • Anderson LA, Malmierca MS (2013) The effect of auditory cortical deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37:52–62

    Article  CAS  PubMed  Google Scholar 

  • Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31:17306–17316

    Article  CAS  PubMed  Google Scholar 

  • Antunes FM, Nelken I, Covey E, Malmierca MS (2010) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 5:e14071

    Article  PubMed Central  PubMed  Google Scholar 

  • Astikainen P, Stefanics G, Nokia M, Lipponen A, Cong F et al (2011) Memory-based mismatch response to frequency changes in rats. PLoS One 6(9):e24208. doi:10.1371/journal.pone.0024208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ayala YA, Malmierca MS (2013) Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 6:89. doi:10.3389/fncir.2012.00089

    PubMed Central  PubMed  Google Scholar 

  • Ayala YA, Pérez-González D, Duque D, Nelken I, Malmierca MS (2013) Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 6:119. doi:10.3389/fncir.2012.00119

    PubMed Central  PubMed  Google Scholar 

  • Baldeweg T (2007) ERP repetition effects and mismatch negativity generation: a predictive coding perspective. J Psychophysiol 27:204–213

    Article  Google Scholar 

  • Bendixen A, Schröger E (2008) Memory trace formation for abstract auditory features and its consequences in different attentional contexts. Biol Psychol 78:231–241

    Article  PubMed  Google Scholar 

  • Bendixen A, Roeber U, Schröger E (2007) Regularity extraction and application in dynamic auditory stimulus sequences. J Cogn Neurosci 19:1664–1677

    Article  PubMed  Google Scholar 

  • Bendixen A, Prinz W, Horváth J, Trujillo-Barreto NJ, Schröger E (2008) Rapid extraction of auditory feature contingencies. Neuroimage 41:1111–1119

    Article  PubMed  Google Scholar 

  • Bendixen A, SanMiguel I, Schröger E (2012) Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol 83:120–131

    Article  PubMed  Google Scholar 

  • Borgmann C, Ross B, Draganova R, Pantev C (2001) Human auditory middle latency responses: influence of stimulus type and intensity. Hear Res 158:57–64

    Article  CAS  PubMed  Google Scholar 

  • Cacciaglia R, Slabu L, Sanjuán A, Grimm S, Ventura-Campos N, Ávila C, Escera C (2013) Auditory deviance detection along the ascending auditory pathway: direct evidence from functional magnetic resonance imaging. 19th annual meeting of the organization for human brain mapping, abstract 3926

  • Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47:236–246

    Article  PubMed Central  PubMed  Google Scholar 

  • Cornella M, Leung S, Grimm S, Escera C (2012) Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One 7:e43604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cornella M, Leung S, Grimm S, Escera C (2013) Regularity encoding and deviance detection of frequency modulated sweeps: human middle- and long-latency auditory evoked potentials. Psychophysiology. doi:10.1111/psyp.12137

    PubMed  Google Scholar 

  • Costa-Faidella J, Baldeweg T, Grimm S, Escera C (2011a) Interactions between “what” and “when” in the auditory system: temporal predictability enhances repetition suppression. J Neurosci 31:18590–18597

    Article  CAS  PubMed  Google Scholar 

  • Costa-Faidella J, Grimm S, Slabu L, Díaz-Santaella F, Escera C (2011b) Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48:774–783

    Article  PubMed  Google Scholar 

  • Cowan N, Winkler I, Teder W, Näätänen R (1993) Memory prerequisites of the mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol Hum Percept Perform 19:909–921

    CAS  Google Scholar 

  • Deouell LY (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21:188–203

    Article  Google Scholar 

  • Deouell LY, Parnes A, Pickard N, Knight RT (2006) Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity. Eur J Neurosci 24:1488–1494

    Article  PubMed  Google Scholar 

  • Domínguez-Borràs J, Garcia-Garcia M, Escera C (2008) Emotional context enhances auditory novelty processing: behavioural and electrophysiological evidence. Eur J Neurosci 28:1199–1206

    Article  PubMed  Google Scholar 

  • Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency and level dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32:17762–17774

    Article  CAS  PubMed  Google Scholar 

  • Escera C, Corral MJ (2007) Role of mismatch negativity and novelty-P3 in involuntary auditory attention. J Psychophysiol 21:251–264

    Article  Google Scholar 

  • Escera C, Malmierca MS (2013) The auditory novelty system: an attempt to integrate human and animal research. Psychophysiology. doi:10.1111/psyp.12156

  • Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590–604

    Article  CAS  PubMed  Google Scholar 

  • Escera C, Alho K, Schröger E, Winkler I (2000a) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151–166

    Article  CAS  PubMed  Google Scholar 

  • Escera C, Yago E, Polo MD, Grau C (2000b) The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clin Neurophysiol 111:546–551

    Article  CAS  PubMed  Google Scholar 

  • Escera C, Yago E, Alho K (2001) Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. Eur J Neurosci 14:877–883

    Article  CAS  PubMed  Google Scholar 

  • Escera C, Yago E, Corral MJ, Corbera S, Nuñez MI (2003) Attention capture by auditory significant stimuli: semantic analysis follows attention switching. Eur J Neurosci 18:2408–2412

    Article  PubMed  Google Scholar 

  • Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of the underlying mechanisms. Clin Neurophysiol 120:453–463

    Article  PubMed Central  PubMed  Google Scholar 

  • Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640

    Article  CAS  PubMed  Google Scholar 

  • Gomes H, Bernstein R, Ritter W, Vaughan HG Jr, Miller J (1997) Storage of feature conjunctions in transient auditory memory. Psychophysiology 34:712–716

    Article  CAS  PubMed  Google Scholar 

  • Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85:88–92

    Article  PubMed  Google Scholar 

  • Grimm S, Escera C, Slabu LM, Costa-Faidella J (2011) Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology 48:377–384

    Article  PubMed  Google Scholar 

  • Grimm S, Recasens M, Althen H, Escera C (2012) Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biol Psychol 89:232–239

    Article  PubMed  Google Scholar 

  • Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci 25:10494–10501

    Article  CAS  PubMed  Google Scholar 

  • Jääskeläinen IP, Ahveninen J, Bonmassar G et al (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 17:6809–6814

    Article  Google Scholar 

  • Jacobsen T, Schröger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114:1133–1143

    Article  PubMed  Google Scholar 

  • Jacobsen T, Horenkamp T, Schröger E (2003) Preattentive memory-based comparison of sound intensity. Audiol Neurootol 8:338–346

    Article  PubMed  Google Scholar 

  • King C, Mcgee T, Rubel EW, Nicol T, Kraus N (1995) Acoustic features and acoustic changes are represented by different central pathways. Hear Res 85:45–52

    Article  CAS  PubMed  Google Scholar 

  • Knight RT (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259

    Article  CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Littman T, Nicol T, King C (1994a) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72:1270–1277

    CAS  PubMed  Google Scholar 

  • Kraus N et al (1994b) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96:2758–2768

    Article  CAS  PubMed  Google Scholar 

  • Leung S, Cornella M, Grimm S, Escera C (2012) Is fast auditory change detection feature-specific? An electrophysiological study in humans. Psychophysiology 49:933–942

    Article  PubMed  Google Scholar 

  • Leung S, Recasens M, Grimm S, Escera C (2013) Electrophysiological index of acoustic temporal regularity violation. Clin Neurophysiol. doi:10.1016/j.clinph.2013.06.001

    PubMed  Google Scholar 

  • Makeig S (1990) A dramatic increase in the auditory middle latency response at very slow rates. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research. University Press, Tilburg, pp 60–64

    Google Scholar 

  • Mäkelä JP, Salmelin R, Kotila M, Salonen O, Laaksonen R, Hokkanen L, Hari R (1998) Modification of neuromagnetic cortical signals by thalamic infarctions. Electroencephalogr Clin Neurophysiol 106:433–443

    Article  PubMed  Google Scholar 

  • Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez-Moreno E, Llamas A, Avendaño C, Renes E, Reinoso-Suárez F (1987) General plan of the thalamic projections to the prefrontal cortex in the cat. Brain Res 07:17–26

    Article  Google Scholar 

  • May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122

    Article  PubMed  Google Scholar 

  • Näätänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288

    Article  Google Scholar 

  • Näätänen R (1992) Attention and brain function. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  • Näätänen R, Escera C (2000) Mismatch negativity (MMN): clinical and other applications. Audiol Neurootol 5:105–110

    Article  PubMed  Google Scholar 

  • Näätänen R, Michie P (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136

    Article  PubMed  Google Scholar 

  • Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329

    Article  Google Scholar 

  • Näätänen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 115:140–144

    Article  PubMed  Google Scholar 

  • Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590

    Article  PubMed  Google Scholar 

  • Näätänen R, Kujala T, Kreegippu K, Carlson S, Escera C, Baldeweg T, Curtis P (2011) The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in aging. Brain 134:3432–3450

    Article  Google Scholar 

  • Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in aging and different clinical conditions. Clin Neurophysiol 123:424–458

    Article  PubMed  Google Scholar 

  • Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223

    Article  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Paavilainen P (2013) The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int J Psychophysiol 88:109–123

    Article  PubMed  Google Scholar 

  • Pérez-González D, Covey E, Malmierca MS (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879–2885

    Article  PubMed  Google Scholar 

  • Pérez-González D, Hernandez O, Covey E, Malmierca MS (2012) GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7:e34297

    Article  PubMed Central  PubMed  Google Scholar 

  • Picton TW (2010) Human auditory evoked potentials. Plural Publishing, San Diego

    Google Scholar 

  • Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I: evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190

    Article  CAS  PubMed  Google Scholar 

  • Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139

    Article  CAS  PubMed  Google Scholar 

  • Puschmann S, Sandmann P, Ahrens J, Thorne J, Weerda R, Klump G, Debener S, Thiel CM (2013) Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage 75:155–164

    Article  PubMed  Google Scholar 

  • Recasens M, Grimm S, Capilla A, Nowak R, Escera C (2012) Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cereb Cortex. doi:10.1093/cercor/bhs295

    PubMed  Google Scholar 

  • Recasens M, Grimm S, Leung S, Wollbrink A, Pantev C, Escera C (2013) Pitches & patterns: distinct encoding mechanisms for different acoustic regularity levels. 19th annual meeting of the organization for human brain mapping, abstract 3940

  • Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19

    Article  CAS  PubMed  Google Scholar 

  • Ruhnau P, Herrmann B, Schröger E (2012) Finding the right control: the mismatch negativity under investigation. Clin Neurophysiol 123:507–512

    Article  PubMed  Google Scholar 

  • Ruusuvirta T, Penttonen M, Korhonen T (1998) Auditory cortical event-related potentials to pitch deviances in rats. Neurosci Lett 248:45–48

    Article  CAS  PubMed  Google Scholar 

  • SanMiguel I, Corral MJ, Escera C (2008) When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm. J Cogn Neurosci 20:1131–1145

    Article  PubMed  Google Scholar 

  • Schröger E (1996) Neural mechanism for involuntary attention shifts to changes in auditory stimulation. J Cogn Neurosci 8:527–539

    Article  PubMed  Google Scholar 

  • Schröger E, Wolff C (1996) Mismatch response to changes in sound location. Neuroreport 7:3005–3008

    Article  PubMed  Google Scholar 

  • Schröger E, Wolff C (1998) Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm. Cogn Brain Res 7:71–87

    Article  Google Scholar 

  • Skoe E, Kraus N (2010) Auditory brainstem response to complex sounds: a tutorial. Ear Hear 31:302–324

    Article  PubMed Central  PubMed  Google Scholar 

  • Slabu LM, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32:859–865

    Article  PubMed  Google Scholar 

  • Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosci 32:1447–1452

    Article  CAS  PubMed  Google Scholar 

  • Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133:780–799

    Article  PubMed  Google Scholar 

  • Sonnadara RR, Alain C, Trainor LJ (2006) Occasional changes in sound location enhance middle latency evoked responses. Brain Res 1076:187–192

    Article  CAS  PubMed  Google Scholar 

  • Stochard JJ, Stochard EJ, Sharbrough FW (1979) Brain-steam auditory-evoked responses. Arch Neurol 36:597–598

    Google Scholar 

  • Suga N, Xiao Z, Ma X, Ji W (2002) Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36:9–18

    Article  CAS  PubMed  Google Scholar 

  • Taaseh N, Yaron A, Nelken (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One 6(8):e23369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thornton C, Heneghan CP, James MF, Jones JG (1984) Effects of halothane or enflurane with controlled ventilation on auditory evoked potentials. Br J Anaesth 56:315–323

    Article  CAS  PubMed  Google Scholar 

  • Tse CY, Penney TB (2008) On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance. Neuroimage 41:1462–1470

    Article  PubMed  Google Scholar 

  • Ulanovsky N, La L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453

    Article  CAS  PubMed  Google Scholar 

  • Widmann A, Kujala T, Tervaniem M, Kujala A, Schröger E (2004) From symbols to sounds: visual symbolic information activates sound representations. Psychophysiology 41:709–715

    Article  PubMed  Google Scholar 

  • Winkler I (1993) Mismatch negativity: an event-related brain potential measure of auditory sensory memory traces. Doctor of philosophy thesis, University of Helsinki, Helsinki

  • Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13:532–540

    Article  PubMed  Google Scholar 

  • Woods DL, Alain C, Covarrubias D, Zaidel O (1995) Middle latency auditory evoked potentials to tones of different frequency. Hear Res 85:69–75

    Article  CAS  PubMed  Google Scholar 

  • Yago E, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport 12:2583–2587

    Article  CAS  PubMed  Google Scholar 

  • Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423

    Article  CAS  PubMed  Google Scholar 

  • Yvert B, Fischer C, Bertrand O, Pernier J (2005) Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. Neuroimage 28:140–153

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Knowledge: Project PSI2012-37174, Programa Euroinvestigación-EUI2009-04086 awarded to the ERANET-NEURON Project PANS, and Consolider-Ingenio 2010 program (CDS2007-00012). Funds were also received from a grant from the Catalan Government (SGR2009-11) and the ICREA Academia Distinguished Professorship awarded to Carles Escera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Escera.

Additional information

This is one of several papers published together in Brain Topography in the “Special Issue: Mismatch Negativity”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escera, C., Leung, S. & Grimm, S. Deviance Detection Based on Regularity Encoding Along the Auditory Hierarchy: Electrophysiological Evidence in Humans. Brain Topogr 27, 527–538 (2014). https://doi.org/10.1007/s10548-013-0328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0328-4

Keywords

Navigation