Skip to main content

The Role of the Auditory Brainstem in Regularity Encoding and Deviance Detection

  • Chapter
  • First Online:
The Frequency-Following Response

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 61))

Abstract

How does a listener perceive the auditory world and make sense from the myriad of concurrent sounds in the noisy and complex soundscape impinging our ears as a continuous flow? A major emerging view in cognitive auditory neuroscience is that the auditory system implements a pervasive mechanism by which dynamic auditory input is modeled into neural traces of regularities that allow the system to derive perceptual auditory objects. A large number of studies that used auditory sequences of various statistical complexities and that were performed with a range of neuroscience methods (e.g., neuro-imaging, electroencephalography and auditory evoked potentials, single neuron recordings) together have shown that regularity encoding and deviance detection is a key property of the auditory cortex. Furthermore, recordings in the inferior colliculus (IC) and the auditory thalamus of experimental animals have disclosed stimulus-specific adaptation (SSA) at these levels of the auditory pathway, challenging the corticocentric view of regularity encoding and deviance detection. Together with recent experiments using oddball sequences to measure early auditory evoked potentials, such as the middle latency response (MLR) and particularly the frequency-following response (FFR), those studies support the emerging view that regularity encoding and deviance detection are a key functional properties of the entire auditory system from at least the IC to high-order auditory cortical regions, and that the subcortical auditory pathway can implement certain forms of “primitive intelligence”, thereby contributing to auditory cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghamolaei, M., Zarnowiec, K., Grimm, S., & Escera, C. (2016). Functional dissociations between regularity encoding and deviance detection along the auditory hierarchy. European Journal of Neuroscience, 43(4), 529–535.

    Article  PubMed  Google Scholar 

  • Ahveninen, J., Huang, S., Nummenmaa, A., Belliveau, J. W., et al. (2013). Evidence for distinct human auditory cortex regions for sound location versus identity processing. Nature Communications, 4, 2585. Doi:10.1038/ncomms3585

    Article  PubMed  PubMed Central  Google Scholar 

  • Alho, K., Grimm, S., Mateo-León, S., Costa-Faidella, J., & Escera, C. (2012). Early processing of pitch in the human auditory system. European Journal of Neuroscience, 36, 2972–2978.

    Article  PubMed  Google Scholar 

  • Althen, H., Grimm, S., & Escera, C. (2011). Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS ONE, 6(12), e28522. Doi:10.1371/journal.pone.0028522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, L. A., & Malmierca, M. S. (2013). The effect of auditory cortical deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. European Journal of Neuroscience, 37, 52–62.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013). Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences of the USA, 110(11), 4357–4362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes, F. M., & Malmierca, M. S. (2011). Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. The Journal of Neuroscience, 31, 17306–17316.

    Article  CAS  PubMed  Google Scholar 

  • Antunes, F. M., Nelken, I., Covey, E., & Malmierca, M. S. (2010). Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS ONE, 5, e14071.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayala, Y. A., & Malmierca, M. S. (2015). Cholinergic modulation of stimulus-specific adaptation in the inferior colliculus. The Journal of Neuroscience, 35(35), 12261–12272.

    Article  CAS  PubMed  Google Scholar 

  • Ayala, Y. A., Pérez-González, D., Duque, D., Nelken, I., & Malmierca, M. S. (2012). Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Frontiers in Neural Circuits, 6, 119. Doi:10.3389/fncir.2012.00119

    PubMed  Google Scholar 

  • Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13(2), 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Bellier, L., Bouchet, P., Jeanvoine, A., Valentin, O., et al. (2015). Topographic recordings of auditory evoked potentials to speech: Subcortical and cortical responses. Psychophysiology, 52(4), 549–594.

    Article  Google Scholar 

  • Bendixen, A., Prinz, W., Horváth, J., Trujillo-Barreto, N. J., & Schröger, E. (2008). Rapid extraction of auditory feature contingencies. NeuroImage, 41(3), 1111–1119.

    Article  PubMed  Google Scholar 

  • Bidelman, G. M. (2015). Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials. The Journal of Neuroscience Methods, 15(241), 94–100.

    Article  Google Scholar 

  • Bregman, A. (1990). Auditory scene analysis. The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cacciaglia, R., Escera, C., Slabu, L. S., Grimm, S., et al. (2015). Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia, 68, 51–58.

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T., & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron, 64(3), 311–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran, B., & Kraus, N. (2010). The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 47, 236–246.

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., Kraus, N., & Wong, P. C. (2012). Human inferior colliculus activity relates to individual differences in spoken language learning. Journal of Neurophysiology, 107(5), 1325–1336.

    Article  PubMed  Google Scholar 

  • Chandrasekaran, B., Skoe, E., & Kraus, N. (2014). An integrative model of subcortical auditory plasticity. Brain Topography, 27(4), 539–552.

    Article  PubMed  Google Scholar 

  • Chen, I. W., Helmchen, F., & Lütcke, H. (2015). Specific early and late oddball-evoked responses in excitatory and inhibitory neurons of mouse auditory cortex. The Journal of Neuroscience, 35(36), 12560–12573.

    Article  CAS  PubMed  Google Scholar 

  • Coffey, E. B. J., Herholz, S. C., Cepesiuk, A. M. P., Baillet, S., & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 7, 11070. Doi:10.1038/ncomms11070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornella, M., Leung, S., Grimm, S., & Escera, C. (2012). Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS ONE, 7(8), e43604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornella, M., Leung, S., Grimm, S., & Escera, C. (2013). Regularity encoding and deviance detection of frequency modulated sweeps: Human middle- and long-latency auditory evoked potentials. Psychophysiology, 50, 1275–1281.

    Article  PubMed  Google Scholar 

  • Costa-Faidella, J., Baldeweg, T., Grimm, S., & Escera, C. (2011a). Interactions between “what” and “when” in the auditory system: Temporal predictability enhances repetition suppression. The Journal of Neuroscience, 31, 18590–18597.

    Article  CAS  PubMed  Google Scholar 

  • Costa-Faidella, J., Grimm, S., Slabu, L., Díaz-Santaella, F., & Escera, C. (2011b). Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology, 48, 774–783.

    Article  PubMed  Google Scholar 

  • Davis, R. L., & Britt, R. H. (1984). Analysis of the frequency following response in the cat. Hearing Research, 15(1), 29–37.

    Article  CAS  PubMed  Google Scholar 

  • Deouell, L. Y. (2007). The frontal generator of the mismatch negativity revisited. Journal of Psychophysiology, 21, 188–203.

    Article  Google Scholar 

  • Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceeding of the National Academy of Sciences of the U S A, 93(24), 13494–13499.

    Article  CAS  Google Scholar 

  • Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10, 590–604.

    Article  CAS  PubMed  Google Scholar 

  • Escera, C., & Corral, M. J. (2007). Role of mismatch negativity and novelty-P3 in involuntary auditory attention. Journal of Psychophysiology, 21, 251–264.

    Article  Google Scholar 

  • Escera, C., Leung, S., & Grimm, S. (2014). Deviance detection based on regularity encoding along the auditory hierarchy: Electrophysiological evidence in humans. Brain Topography, 27(4), 527–538.

    Article  PubMed  Google Scholar 

  • Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology, 51, 111–123.

    Article  PubMed  Google Scholar 

  • Farley, B. J., Quirk, M. C., Doherty, J. J., & Christian, E. P. (2010). Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. The Journal of Neuroscience, 30, 16475–16484.

    Article  CAS  PubMed  Google Scholar 

  • Ford, J. M., & Hillyard, S. A. (1981). Event-related potentials (ERPs) to interruptions of a steady rhythm. Psychophysiology, 18(3), 322–330.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1456), 815–836.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain. Journal of Physiololgy (Paris), 100(1–3), 70–87.

    Article  Google Scholar 

  • Gorina-Careta, N., Zarnowiec, K., Costa-Faidella, C., & Escera, C. (2016). Timing predictability enhances regularity encoding in the human subcortical auditory pathway. Scientific Reports, 6, 37405. doi:10.1038/srep37405.

  • Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10, 14–23.

    Article  PubMed  Google Scholar 

  • Grimm, S., & Escera, C. (2012). Auditory deviance detection revisited: Evidence for a hierarchical novelty system. International Journal of Psychophysiology, 85, 88–92.

    Article  PubMed  Google Scholar 

  • Grimm, S., Escera, C., & Nelken, I. (2016). Early indices of deviance detection in humans and animal models. Biological Psychology, 116, 23–27.

    Article  PubMed  Google Scholar 

  • Grimm, S., Escera, C., Slabu, L. M., & Costa-Faidella, J. (2011). Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology, 48, 377–384.

    Article  PubMed  Google Scholar 

  • Grimm, S., Recasens, M., Althen, H., & Escera, C. (2012). Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biological Psychology, 89, 232–239.

    Article  PubMed  Google Scholar 

  • Haenschel, C., Vernon, D. J., Dwivedi, P., Gruzelier, J. H., & Baldeweg, T. (2005). Event-related brain potential correlates of human auditory sensory memory-trace formation. Journal of Neuroscience, 25, 10494–10501.

    Article  CAS  PubMed  Google Scholar 

  • Jeng, F. C., Chung, H. K., Lin, C. D., Dickman, B., & Hu, J. (2011). Exponential modeling of human frequency-following responses to voice pitch. International Journal of Audiology, 50(9), 582–593.

    Article  PubMed  Google Scholar 

  • Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Review, 84(2), 541–577.

    Article  CAS  Google Scholar 

  • Kraus, N., McGee, T., Littman, T., Nicol, T., & King, C. (1994). Nonprimary auditory thalamic representation of acoustic change. Journal of Neurophysiology, 72, 1270–1277.

    CAS  PubMed  Google Scholar 

  • Krizman, J., Marian, V., Shook, A., Skoe, E., & Kraus, N. (2012). Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences of the U S A, 109(20), 7877–7881.

    Article  CAS  Google Scholar 

  • Leung, S., Recasens, M., Grimm, S., & Escera, C. (2013). Electrophysiological index of acoustic temporal regularity violation in the middle latency range. Clinical Neurophysiology, 124, 2397–2405.

    Article  PubMed  Google Scholar 

  • Malmierca, M. S., Anderson, L. A., & Antunes, F. M. (2015). The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: A potential neuronal correlate for predictive coding. Frontiers in Systems Neuroscience, 9, 19. Doi:10.3389/fnsys.2015.00019

    Article  PubMed  PubMed Central  Google Scholar 

  • Malmierca, M. S., Cristaudo, S., Perez-Gonzalez, D., & Covey, E. (2009). Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. The Journal of Neuroscience, 29, 5483–5493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller, A. R., Jannetta, P. J., & Sekhar, L. N. (1988). Contributions from the auditory nerve to the brain-stem auditory evoked potentials (BAEPs): Results of intracranial recording in man. Electroencephalography and Clinical Neurophysiology, 71, 198–211.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Astikainen, P., Ruusuvirta, T., & Huotilainen, M. (2010). Automatic auditory intelligence: An expression of the sensory-cognitive core of cognitive processes. Brain Research Reviews, 64(1), 123–136.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 2544–2590.

    Article  PubMed  Google Scholar 

  • Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). “Primitive intelligence” in the auditory cortex. Trends in Neurosciences, 24, 283–288.

    Article  PubMed  Google Scholar 

  • Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 6, 826–859.

    Article  Google Scholar 

  • Nelken, I. (2014). Stimulus-specific adaptation and deviance detection in the auditory system: Experiments and models. Biological Cybernetics, 108, 655–663.

    Article  PubMed  Google Scholar 

  • Nelken, I., & Ulanovsky, N. (2007). Mismatch negativity and stimulus-specific adaptation in animal models. Journal of Psychophysiology, 21, 214–223.

    Article  Google Scholar 

  • Opitz, B., Mecklinger, A., Von Cramon, D. Y., & Kruggel, F. (1999). Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology, 36(1), 142–147.

    Article  CAS  PubMed  Google Scholar 

  • Paavilainen, P. (2013). The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. International Journal of Psychophysiology, 88, 109–123.

    Article  PubMed  Google Scholar 

  • Parbery-Clark, A., Strait, D. L., & Kraus, N. (2011). Context-dependent encoding in the auditory brainstem subserves enhanced speech-in-noise perception in musicians. Neuropsychologia, 49(12), 3338–3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkkonen, L., Fujiki, N., & Mäkelä, J. P. (2009). Sources of auditory brainstem responses revisited: Contribution by magnetoencephalography. Human Brain Mapping, 30(6), 1772–1782.

    Article  PubMed  Google Scholar 

  • Parvizi, J. (2009). Corticocentric myopia: Old bias in new cognitive sciences. Trends in Cognitive Sciences, 13(8), 354–359.

    Article  PubMed  Google Scholar 

  • Pérez-González, D., Covey, E., & Malmierca, M. S. (2005). Novelty detector neurons in the mammalian auditory midbrain. European Journal of Neuroscience, 22, 2879–2885.

    Article  PubMed  Google Scholar 

  • Pérez-González, D., Hernandez, O., Covey, E., & Malmierca, M. S. (2012). GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS ONE, 7, e34297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Picton, T. W. (2011). Human auditory evoked potentials. San Diego: Plural Publishing.

    Google Scholar 

  • Recasens, M., Grimm, S., Capilla, A., Nowak, R., & Escera, C. (2014). Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cerebral Cortex, 24, 143–153.

    Article  PubMed  Google Scholar 

  • Recasens, M., Leung, S., Grimm, S., Nowak, R., & Escera, C. (2015). Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: An MEG study. NeuroImage, 108, 75–86.

    Article  PubMed  Google Scholar 

  • Riecke, L., Formisano, E., Herrmann, C. S., & Sack, A. T. (2015). 4-Hz Transcranial alternating current stimulation phase modulates hearing. Brain Stimulation, 8(4), 777–783.

    Article  PubMed  Google Scholar 

  • Ruhnau, P., Herrmann, B., & Schröger, E. (2012). Finding the right control: The mismatch negativity under investigation. Clinical Neurophysiology, 123, 507–512.

    Article  PubMed  Google Scholar 

  • Sabri, M., Kareken, D. A., Dzemidzic, M., Lowe, M. J., & Melara, R. D. (2004). Neural correlates of auditory sensory memory and automatic change detection. NeuroImage, 21(1), 69–74.

    Article  PubMed  Google Scholar 

  • Schaefer, J., Zarnowiec, K., SanMiguel, I., Malmierca, M. S., & Escera, C. (2015). Predicting complex acoustic contingencies in the human auditory brainstem. In A. Widmann, J. Steinberg, A. Bendixen, A. D. Friederici, et al. (Eds.), Error Signals from the Brain: 7th Mismatch Negativity Conference (pp. 61–62). Leipzig: University of Leipzig Press.

    Google Scholar 

  • Schröger, E., & Wolff, C. (1996). Mismatch response to changes in sound location. NeuroReport, 7, 3005–3008.

    Article  PubMed  Google Scholar 

  • Shiga, T., Althen, H., Cornella, M., Zarnowiec, K., et al. (2015). Deviance-related responses along the auditory hierarchy: Combined FFR. MLR and MMN evidence. PLOS ONE, 10(9), e0136794. Doi:10.1371/journal.pone.0136794

    Article  PubMed  Google Scholar 

  • Skoe, E., & Chandrasekaran, B. (2014). The layering of auditory experiences in driving experience-dependent subcortical plasticity. Hearing Research, 311, 36–48.

    Article  PubMed  Google Scholar 

  • Skoe, E., Chandrasekaran, B., Spitzer, E. R., Wong, P. C., & Kraus, N. (2014). Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiology of Learning and Memory, 109, 82–93.

    Article  PubMed  Google Scholar 

  • Skoe, E., & Kraus, N. (2010a). Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing, 31, 302–324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoe, E., & Kraus, N. (2010b). Hearing it again and again: On-line subcortical plasticity in humans. PLoS ONE, 5(10), e13645. Doi:10.1371/journal.pone.0013645

    Article  PubMed  PubMed Central  Google Scholar 

  • Skoe, E., Krizman, J., Spitzer, E., & Kraus, N. (2013). The auditory brainstem is a barometer of rapid auditory learning. Neuroscience, 243, 104–114.

    Article  CAS  PubMed  Google Scholar 

  • Slabu, L. M., Escera, C., Grimm, S., & Costa-Faidella, J. (2010). Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. European Journal of Neuroscience, 32, 859–865.

    Article  PubMed  Google Scholar 

  • Slabu, L., Grimm, S., & Escera, C. (2012). Novelty detection in the human auditory brainstem. The Journal of Neuroscience, 32(4), 1447–1452.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. C., Marsh, J. T., & Brown, W. S. (1975). Far-field recorded frequency-following responses: Evidence for the locus of brainstem sources. Electroencephalography and Clinical Neurophysiology, 39(5), 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Sohmer, H., Pratt, H., & Kinarti, R. (1977). Sources of frequency following responses (FFR) in man. Electroencephalography and Clinical Neurophysiology, 42(5), 656–664.

    Article  CAS  PubMed  Google Scholar 

  • Strait, D. L., Hornickel, J., & Kraus, N. (2011). Subcortical processing of speech regularities underlies reading and music aptitude in children. Behavioral and Brain Functions, 7, 44. Doi:10.1186/1744-9081-7-44

    Article  PubMed  PubMed Central  Google Scholar 

  • Suga, N. (2008). Role of corticofugal feedback in hearing. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 194, 169–183.

    Article  PubMed  Google Scholar 

  • Suga, N., Xiao, Z., Ma, X., & Li, W. (2002). Plasticity and corticofugal modulation for hearing in adults animals. Neuron, 36, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Taaseh, N., Yaron, A., & Nelken, I. (2011). Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS ONE, 6, e23369. Doi:10.1371/journal.pone.0023369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo-Barreto, N. J., Aubert-Vázquez, E., & Valdés-Sosa, P. A. (2004). Bayesian model averaging in EEG/MEG imaging. NeuroImage, 21, 1300–1319.

    Article  PubMed  Google Scholar 

  • Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. The Journal of Neuroscience, 24, 10440–10453.

    Article  CAS  PubMed  Google Scholar 

  • Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6, 391–398.

    Article  CAS  PubMed  Google Scholar 

  • Umbricht, D., Schmid, L., Koller, R., Vollenweider, F. X., et al. (2000). Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: Implications for models of cognitive deficits in schizophrenia. Archives of General Psychiatry, 57, 1139–1147.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, I. (2007). Interpreting the mismatch negativity. Journal of Psychophysiology, 27, 147–163.

    Article  Google Scholar 

  • Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.

    Article  PubMed  Google Scholar 

  • Yvert, B., Crouzeix, A., Bertrand, O., Seither-Preisler, A., & Pantev, C. (2001). Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cerebral Cortex, 11, 411–423.

    Article  CAS  PubMed  Google Scholar 

  • Zarnowiec, K., Costa-Faidella, J., & Escera, C. (2014). Fine-grained violations in rhythmic auditory stimulation modulate the human frequency-following response. International Journal of Psychophysiology, 94, 167.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to all the members of the Brainlab-Cognitive Neuroscience Research Group, past and present, for their work contributing to this research and for being a continuous source of inspiration. Special thanks are for Katarzyna Zarnowiec for her esteemed contribution to set up the FFR experiments and to her and Natàlia Gorina-Careta for their comments on an earlier version of the manuscript. This work was supported by grants from the Fundaçao Bial (Porto, Portugal: 30/12), Fundación Alicia Koplowitz (Madrid, Spain), the Spanish Ministry of Economy and Competitiveness (MINECO: PSI2012-37174, PSI2013-49348-EXPLORA, PSI2015-63664-P), the Catalan Government (SGR2014-177), and the ICREA Acadèmia Distinguished Professorship award.

Compliance with Ethics Requirements

Carles Escera declared that he had no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Escera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Escera, C. (2017). The Role of the Auditory Brainstem in Regularity Encoding and Deviance Detection. In: Kraus, N., Anderson, S., White-Schwoch, T., Fay, R., Popper, A. (eds) The Frequency-Following Response. Springer Handbook of Auditory Research, vol 61. Springer, Cham. https://doi.org/10.1007/978-3-319-47944-6_5

Download citation

Publish with us

Policies and ethics