Skip to main content
Log in

Deviance detection in auditory subcortical structures: what can we learn from neurochemistry and neural connectivity?

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A remarkable ability of animals that is critical for survival is to detect and respond to to unexpected stimuli in an ever-changing world. Auditory neurons that show stimulus-specific adaptation (SSA), i.e., a decrease in their response to frequently occurring stimuli while maintaining responsiveness when different stimuli are presented, might participate in the coding of deviance occurrence. Traditionally, deviance detection is measured by the mismatch negativity (MMN) potential in studies of evoked local field potentials. We present a review of the state-of-the-art of SSA in auditory subcortical nuclei, i.e., the inferior colliculus and medial geniculate body of the thalamus, and link the differential receptor distribution and neural connectivity of those regions in which extreme SSA has been found. Furthermore, we review both SSA and MMN-like responses in auditory and non-auditory areas that exhibit multimodal sensitivities that we suggest conform to a distributed network encoding for deviance detection. The understanding of the neurochemistry and response similarities across these different regions will contribute to a better understanding of the neural mechanism underlying deviance detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott LF, Regehr WG (2004) Synaptic computation. Nature 431:796–803

    CAS  PubMed  Google Scholar 

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224

    CAS  PubMed  Google Scholar 

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368

    CAS  PubMed  Google Scholar 

  • Adams JC, Wenthold RJ (1979) Distribution of putative amino acid transmitters, choline acetyltransferase and glutamate decarboxylase in the inferior colliculus. Neuroscience 4:1947–1951

    CAS  PubMed  Google Scholar 

  • Aguilar LA, Malmierca MS, Covenas R, Lopez-Poveda EA, Tramu G, Merchan M (2004) Immunocytochemical distribution of Met-enkephalin-Arg6-Gly7-Leu8 (Met-8) in the auditory system of the rat. Hear Res 187:111–121

    CAS  PubMed  Google Scholar 

  • Aitkin LM, Prain SM (1974) Medial geniculate body: unit responses in the awake cat. J Neurophysiol 37:512–521

    CAS  PubMed  Google Scholar 

  • Aitkin LM, Webster WR, Veale JL, Crosby DC (1975) Inferior colliculus. I. Comparison of response properties of neurons in central, pericentral, and external nuclei of adult cat. J Neurophysiol 38:1196–1207

    CAS  PubMed  Google Scholar 

  • Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978) External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41:837–847

    CAS  PubMed  Google Scholar 

  • Aitkin LM, Kenyon CE, Philpott P (1981) The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J Comp Neurol 196:25–40

    CAS  PubMed  Google Scholar 

  • Andersen RA, Knight PL, Merzenich MM (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol 194:663–701

    CAS  PubMed  Google Scholar 

  • Anderson LA, Linden JF (2011) Physiological differences between histologically defined subdivisions in the mouse auditory thalamus. Hear Res 274:48–60

    PubMed Central  PubMed  Google Scholar 

  • Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37:52–62

    CAS  PubMed  Google Scholar 

  • Anderson LA, Christianson GB, Linden JF (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29:7359–7363

    CAS  PubMed  Google Scholar 

  • Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31:17306–17316

    CAS  PubMed  Google Scholar 

  • Antunes FM, Nelken I, Covey E, Malmierca MS (2010) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 5:e14071. doi:10.1371/journal.pone.0014071

    PubMed Central  PubMed  Google Scholar 

  • Aoki E, Semba R, Keino H, Kato K, Kashiwamata S (1988) Glycine-like immunoreactivity in the rat auditory pathway. Brain Res 442:63–71

    CAS  PubMed  Google Scholar 

  • Astikainen P, Ruusuvirta T, Wikgren J, Penttonen M (2006) Memory-based detection of rare sound feature combinations in anesthetized rats. Neuroreport 17:1561–1564

    PubMed  Google Scholar 

  • Astikainen P, Stefanics G, Nokia M, Lipponen A, Cong F, Penttonen M, Ruusuvirta T (2011) Memory-based mismatch response to frequency changes in rats. PLoS One 6:e24208. doi:10.1371/journal.pone.0024208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aston-Jones G (2004) Locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier/Academic Press, San Diego, pp 259–294

    Google Scholar 

  • Ayala YA, Malmierca MS (2013) Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 6:89. doi:10.3389/fncir.2012.00089

    PubMed Central  PubMed  Google Scholar 

  • Ayala YA, Perez-Gonzalez D, Duque D, Nelken I, Malmierca MS (2013) Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 6:119. doi:10.3389/fncir.2012.00119

    PubMed Central  PubMed  Google Scholar 

  • Banks MI, Smith PH (2011) Thalamocortical relations. In: Winer JA, Schreiner C (eds) The auditory cortex. Springer, New York, pp 75–97

    Google Scholar 

  • Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81:1999–2016

    CAS  PubMed  Google Scholar 

  • Bartlett EL, Smith PH (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience 113:957–974

    CAS  PubMed  Google Scholar 

  • Bäuerle P, Behrens W von der, Kossl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31:9708–9722

  • Bendixen A, SanMiguel I, Schroger E (2012) Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol 83:120–131

    PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98:261–274

    CAS  PubMed  Google Scholar 

  • Bordi F, LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98:275–286

    CAS  PubMed  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL (1983) Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78:191–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Briley PM, Krumbholz K (2013) The specificity of stimulus-specific adaptation in human auditory cortex increases with repeated exposure to the adapting stimulus. J Neurophysiol 110:2679–2688

    PubMed Central  PubMed  Google Scholar 

  • Bunzeck N, Düzel E (2006) Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 51:369–79

    CAS  PubMed  Google Scholar 

  • Buran BN, Trapp G von, Sanes DH (2014) Behaviorally gated reduction of spontaneous discharge can improve detection thresholds in auditory cortex. J Neurosci 34:4076–4081

  • Cacciaglia R, Escera C, Slabu L, Grimm S, Sanjuán A, Ventura-Campos N, Ávila C (2015)Involvement of the human midbrain and thalamus in auditory deviance detection.Neuropsychologia 68C:51–58

    Google Scholar 

  • Caicedo A, Eybalin M (1999) Glutamate receptor phenotypes in the auditory brainstem and mid-brain of the developing rat. Eur J Neurosci 11:51–74

    CAS  PubMed  Google Scholar 

  • Caicedo A, Kungel M, Pujol R, Friauf E (1998) Glutamate-induced Co2+ uptake in rat auditory brainstem neurons reveals developmental changes in Ca2+ permeability of glutamate receptors. Eur J Neurosci 10:941–954

    CAS  PubMed  Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3:2350–2364

    CAS  PubMed  Google Scholar 

  • Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3:2365–2380

    CAS  PubMed  Google Scholar 

  • Cant NB, Benson CG (2003) Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60:457–474

    PubMed  Google Scholar 

  • Castillo PE, Younts TJ, Chavez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76:70–81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Champoux F, Tremblay C, Mercier C, Lassonde M, Lepore F, Gagné JP, Théoret H (2006) A role for the inferior colliculus in multisensory speech integration. Neuroreport 17:1607–1610

    PubMed  Google Scholar 

  • Chernock ML, Larue DT, Winer JA (2004) A periodic network of neurochemical modules in the inferior colliculus. Hear Res 188:12–20

    CAS  PubMed  Google Scholar 

  • Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    CAS  PubMed  Google Scholar 

  • Christianson GB, Chait M, Cheveigne A de, Linden JF (2014) Auditory evoked fields measured non-invasively with small-animal MEG reveal rapid repetition suppression in the guinea pig. J Neurophysiol 112:3053–3065. doi:10.1152/jn.00189.2014

  • Chudler EH, Sugiyama K, Dong WK (1995) Multisensory convergence and integration in the neostriatum and globus pallidus of the rat. Brain Res 674:33–45

    CAS  PubMed  Google Scholar 

  • Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34:437–446

    CAS  PubMed  Google Scholar 

  • Coleman JR, Clerici WJ (1987) Sources of projections to subdivisions of the inferior colliculus in the rat. J Comp Neurol 262:215–226

    CAS  PubMed  Google Scholar 

  • Coote EJ, Rees A (2008) The distribution of nitric oxide synthase in the inferior colliculus of guinea pig. Neuroscience 154:218–225

    CAS  PubMed  Google Scholar 

  • Covey E, Carr CE (2005) The auditory midbrain in bats and birds. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 493–536

    Google Scholar 

  • Cruikshank SJ, Killackey HP, Metherate R (2001) Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 105:553–569

    CAS  PubMed  Google Scholar 

  • Csepe V, Karmos G, Molnar M (1987a) Effects of signal probability on sensory evoked potentials in cats. Int J Neurosci 33:61–71

    CAS  PubMed  Google Scholar 

  • Csepe V, Karmos G, Molnar M (1987b) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66:571–578

    CAS  PubMed  Google Scholar 

  • Dean I, Robinson BL, Harper NS, McAlpine D (2008) Rapid neural adaptation to sound level statistics. J Neurosci 28:6430–6438

    CAS  PubMed  Google Scholar 

  • Doron NN, Ledoux JE (1999) Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J Comp Neurol 412:383–409

    CAS  PubMed  Google Scholar 

  • Doron NN, Ledoux JE (2000) Cells in theposterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J Comp Neurol 425:257–274

    CAS  PubMed  Google Scholar 

  • Druga R, Syka J (1993) NADPH-diaphorase activity in the central auditory structures of the rat. Neuroreport 4:999–1002

    CAS  PubMed  Google Scholar 

  • Duque D, Malmierca MS (2014) Stimulus-specific adaptation in the inferior colliculus of the mouse: anesthesia and spontaneous activity effects. Brain Struct Funct. doi:10.1007/s00429-014-0862-1

    PubMed  Google Scholar 

  • Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32:17762–17774

    CAS  PubMed  Google Scholar 

  • Duque D, Malmierca MS, Caspary DM (2014) Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anaesthetized rat. J Physiol (Lond) 592:729–743

    CAS  Google Scholar 

  • Edeline JM (2012) Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices. Front Behav Neurosci 30:6–45. doi:10.3389/fnbeh.2012.00045

    Google Scholar 

  • Edeline JM, Weinberger NM (1991) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav Neurosci 105:154–175

    CAS  PubMed  Google Scholar 

  • Escera C, Malmierca MS (2014) The auditory novelty system: an attempt to integrate human and animal research. Psychophysiology 51:111–123

    PubMed  Google Scholar 

  • Eytan D, Brenner N, Marom S (2003) Selective adaptation in networks of cortical neurons. J Neurosci 23:9349–9356

    CAS  PubMed  Google Scholar 

  • Fishman YI (2013) The mechanisms and meaning of the mismatch negativity. Brain Topogr 27:500–526

    PubMed  Google Scholar 

  • Fishman YI, Steinschneider M (2010) Formation of auditory streams. In: Rees A, Palmer AR (eds) The Oxford handbook of auditory science: auditory brain. Oxford University Press, New York, pp 215–245

    Google Scholar 

  • Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32:15747–15758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    CAS  PubMed  Google Scholar 

  • Freund TF, Hajos N (2003) Excitement reduces inhibition via endocannabinoids. Neuron 38:362–365

    CAS  PubMed  Google Scholar 

  • Friauf E, Hammerschmidt B, Kirsch J (1997) Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J Comp Neurol 385:117–134

    CAS  PubMed  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815–36

    PubMed Central  PubMed  Google Scholar 

  • Friston K (2009) The free-energy principle: a rough guide to the brain. Trends Cogn Sci 13:293–301

    PubMed  Google Scholar 

  • Friston K (2012) Prediction, perception and agency. Int J Psychophysiol 83:248–252

    PubMed Central  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216–1223

    CAS  PubMed  Google Scholar 

  • Fritz JB, Elhilali M, David SV, Shamma SA (2007) Auditory attention–focusing the searchlight on sound. Curr Opin Neurobiol 17:437–455

    CAS  PubMed  Google Scholar 

  • Fubara BM, Casseday JH, Covey E, Schwartz-Bloom RD (1996) Distribution of GABAA, GABAB, and glycine receptors in the central auditory system of the big brown bat, Eptesicus fuscus. J Comp Neurol 369:83–92

    CAS  PubMed  Google Scholar 

  • Gaza WC, Ribak CE (1997) Immunocytochemical localization of AMPA receptors in the rat inferior colliculus. Brain Res 774:175–183

    CAS  PubMed  Google Scholar 

  • Ghazanfar AA, Maier JX, Hoffman KL, Logothetis NK (2005) Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J Neurosci 25:5004–5012

    CAS  PubMed  Google Scholar 

  • Gittelman JX, Perkel DJ, Portfors CV (2013) Dopamine modulates auditory responses in the inferior colliculus in a heterogeneous manner. J Assoc Res Otolaryngol 14:719–729

    PubMed Central  PubMed  Google Scholar 

  • Gleiss S, Kayser C (2012) Audio-visual detection benefits in the rat. PLoS One 7:e45677. doi:10.1371/journal.pone.0045677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graybiel AM (1972) Some ascending connections of the pulvinar and nucleus lateralis posterior of the thalamus in the cat. Brain Res 44:99–125

    CAS  PubMed  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10:14–23

    PubMed  Google Scholar 

  • Groh JM, Trause AS, Underhill AM, Clark KR, Inati S (2001) Eye position influences auditory responses in primate inferior colliculus. Neuron 29:509–518

    CAS  PubMed  Google Scholar 

  • Gruters KG, Groh JM (2012) Sounds and beyond: multisensory and other non-auditory signals in the inferior colliculus. Front Neural Circuits 6:96. doi:10.3389/fncir.2012.00096

    PubMed Central  PubMed  Google Scholar 

  • Gutfreund Y (2012) Stimulus-specific adaptation, habituation and change detection in the gaze control system. Biol Cybern 106:657–668

    PubMed  Google Scholar 

  • Hari R, Hamalainen M, Ilmoniemi R, Kaukoranta E, Reinikainen K, Salminen J, Alho K, Naatanen R, Sams M (1984) Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neurosci Lett 50:127–132

    CAS  PubMed  Google Scholar 

  • Harley CW (2004) Norepinephrine and dopamine as learning signals. Neural Plast 11:191–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harms L, Fulham WR, Todd J, Budd TW, Hunter M, Meehan C, Penttonen M, Schall U, Zavitsanou K, Hodgson DM, Michie PT (2014) Mismatch negativity (MMN) in freely-moving rats with several experimental controls. PLoS One 9:e110892. doi:10.1371/journal.pone.0110892

    PubMed Central  PubMed  Google Scholar 

  • He J, Hu B (2002) Differential distribution of burst and single-spike responses in auditory thalamus. J Neurophysiol 88:2152–2156

    PubMed  Google Scholar 

  • Herbert H, Klepper A, Ostwald J (1997) Afferent and efferent connections of the ventrolateral tegmental area in the rat. Anat Embryol (Berl) 196:235–259

    CAS  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, Costa BR de, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87:1932–1936

  • Hershenhoren I, Taaseh N, Antunes FM, Nelken I (2014) Intracellular correlates of stimulus-specific adaptation. J Neurosci 34:3303–3319

    CAS  PubMed  Google Scholar 

  • Hormigo S, Horta Junior Jde A, Gomez-Nieto R, Lopez DE (2012) The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats. Front Neural Circuits 6:41. doi:10.3389/fncir.2012.00041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu B (2003) Functional organization of lemniscal and nonlemniscal auditory thalamus. Exp Brain Res 153:543–549

    CAS  PubMed  Google Scholar 

  • Hu B, Senatorov V, Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol (Lond) 479:217–231

    Google Scholar 

  • Huang CL, Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J Comp Neurol 427:302e331

    Google Scholar 

  • Hurley LM, Pollak GD (2005) Serotonin shifts first-spike latencies of inferior colliculus neurons. J Neurosci 25:7876–7886

    CAS  PubMed  Google Scholar 

  • Hurley LM, Sullivan MR (2012) From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits 6:58. doi:10.3389/fncir.2012.00058

    PubMed Central  PubMed  Google Scholar 

  • Hurley LM, Thompson AM, Pollak GD (2002) Serotonin in the inferior colliculus. Hear Res 168:1–11

    CAS  PubMed  Google Scholar 

  • Itaya SK, Van Hoesen GW (1982) Retinal innervation of the inferior colliculus in rat and monkey. Brain Res 233:45–52

    CAS  PubMed  Google Scholar 

  • Ito T, Bishop DC, Oliver DL (2011) Expression of glutamate and inhibitory amino acid vesicular transporters in the rodent auditory brainstem. J Comp Neurol 519:316–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwata K, Kenshalo DR Jr, Dubner R, Nahin RL (1992) Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat. J Comp Neurol 321:404–420

    CAS  PubMed  Google Scholar 

  • Jaaskelainen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levanen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci U S A 101:6809–6814

    PubMed Central  PubMed  Google Scholar 

  • Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114:1133–1143

    PubMed  Google Scholar 

  • Jain R, Shore S (2006) External inferior colliculus integrates trigeminal and acoustic information: unit responses to trigeminal nucleus and acoustic stimulation in the guinea pig. Neurosci Lett 395:71–75

    CAS  PubMed  Google Scholar 

  • Jamal L, Zhang H, Finlayson PG, Porter LA, Zhang H (2011) The level and distribution of the GABA(B)R2 receptor subunit in the rat’s central auditory system. Neuroscience 181:243–256

    CAS  PubMed  Google Scholar 

  • Jamal L, Khan AN, Butt S, Patel CR, Zhang H (2012) The level and distribution of the GABA(B)R1 and GABA(B)R2 receptor subunits in the rat’s inferior colliculus. Front Neural Circuits 6:92. doi:10.3389/fncir.2012.00092

    CAS  PubMed Central  PubMed  Google Scholar 

  • Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Vaughan HG Jr (1992) Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol 83:87–90

    CAS  PubMed  Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Vaughan HG Jr, Arezzo JC (1994) Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res 667:192–200

    CAS  PubMed  Google Scholar 

  • Ji W, Gao E, Suga N (2001) Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. J Neurophysiol 86:211–225

    CAS  PubMed  Google Scholar 

  • Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26:578–586

    CAS  PubMed  Google Scholar 

  • Jones EG (2003) Chemically defined parallel pathways in the monkey auditory system. Ann N Y Acad Sci 999:218–233

    CAS  PubMed  Google Scholar 

  • Jong AP de, Verhage M (2009) Presynaptic signal transduction pathways that modulate synaptic transmission. Curr Opin Neurobiol 19:245–253

  • Jung F, Stephan KE, Backes H, Moran R, Gramer M, Kumagai T, Graf R, Endepols H, Tittgemeyer M (2013) Mismatch responses in the awake rat: evidence from epidural recordings of auditory cortical fields. PLoS One 8:e63203. doi:10.1371/journal.pone.0063203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309–380

    CAS  PubMed  Google Scholar 

  • Kayser C, Logothetis NK (2007) Do early sensory cortices integrate cross-modal information? Brain Struct Funct 212:121–132

    PubMed  Google Scholar 

  • Kayser C, Petkov CI, Remedios R, Logothetis NK (2012) Multisensory influences on auditory processing: perspectives from fMRI and electrophysiology. In: Murray MM, Wallace MT (eds) The neural bases of multisensory processes. CRC Press, Boca Raton, pp 99-114

    Google Scholar 

  • Kelly JB (1973) The effects of insular and temporal lesions in cats on two types of auditory pattern discrimination. Brain Res 62:71–87

    CAS  PubMed  Google Scholar 

  • Kelly J, Caspary D (2005) Pharmacology of the inferior colliculus. In: Winer J, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 248–281

    Google Scholar 

  • Kelly JB, Zhang H (2002) Contribution of AMPA and NMDA receptors to excitatory responses in the inferior colliculus. Hear Res 168:35–42

    CAS  PubMed  Google Scholar 

  • King AJ, Walker KM (2012) Integrating information from different senses in the auditory cortex. Biol Cybern 106:617–25

    PubMed Central  PubMed  Google Scholar 

  • King AJ, Jiang ZD, Moore DR (1998) Auditory brainstem projections to the ferret superior colliculus: anatomical contribution to the neural coding of sound azimuth. J Comp Neurol 390:342–365

    CAS  PubMed  Google Scholar 

  • Klepper A, Herbert H (1991) Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Brain Res 557:190–201

    CAS  PubMed  Google Scholar 

  • Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T (2001) Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412:546–549

    CAS  PubMed  Google Scholar 

  • Koyama Y, Jodo E, Kayama Y (1994) Sensory responsiveness of “broad-spike” neurons in the laterodorsal tegmental nucleus, locus coeruleus and dorsal raphe of awake rats: implications for cholinergic and monoaminergic neuron-specific responses. Neuroscience 63:1021–1031

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Carrell T, King C, Littman T, Nicol T (1994a) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96:2758–2768

    CAS  PubMed  Google Scholar 

  • Kraus N, McGee T, Littman T, Nicol T, King C (1994b) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72:1270–1277

    CAS  PubMed  Google Scholar 

  • Kudo M, Niimi K (1980) Ascending projections of the inferior colliculus in the cat: an autoradiographic study. J Comp Neurol 191:545–556

    CAS  PubMed  Google Scholar 

  • Lakatos P, Chen CM, O’Connell MN, Mills A, Schroeder CE (2007) Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53:279–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lavoie B, Parent A (1991) Serotoninergic innervation of the thalamus in the primate: an immunohistochemical study. J Comp Neurol 312:1–18. doi:10.1002/cne.903120102

    CAS  PubMed  Google Scholar 

  • Layton BS, Toga AW, Horenstein S, Davenport DG (1979) Temporal pattern discrimination survives simultaneous bilateral ablation of suprasylvian cortex but not sequential bilateral ablation of insular-temporal cortex in the cat. Brain Res 173:337–340

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264:123–146

    CAS  PubMed  Google Scholar 

  • Lee CC, Sherman SM (2010) Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proc Natl Acad Sci U S A 107:372–377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee CC, Sherman SM (2011) On the classification of pathways in the auditory midbrain, thalamus, and cortex. Hear Res 276:79–87

    PubMed Central  PubMed  Google Scholar 

  • Lee CC, Winer JA (2011) Convergence of thalamic and cortical pathways in cat auditory cortex. Hear Res 274:85–94

    PubMed Central  PubMed  Google Scholar 

  • Lennartz RC, Weinberger NM (1992) Frequency selectivity is related to temporal processing in parallel thalamocortical auditory pathways. Brain Res 583:81–92

    CAS  PubMed  Google Scholar 

  • Li Y, Evans MS, Faingold CL (1998) In vitro electrophysiology of neurons in subnuclei of rat inferior colliculus. Hear Res 121:1–10

    CAS  PubMed  Google Scholar 

  • Li Y, Evans MS, Faingold CL (1999) Synaptic response patterns of neurons in the cortex of rat inferior colliculus. Hear Res 137:15–28

    CAS  PubMed  Google Scholar 

  • Loftus WC, Malmierca MS, Bishop DC, Oliver DL (2008) The cytoarchitecture of the inferior colliculus revisited: a common organization of the lateral cortex in rat and cat. Neuroscience 154:196–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loftus WC, Bishop DC, Oliver DL (2010) Differential patterns of inputs create functional zones in central nucleus of inferior colliculus. J Neurosci 30:13396–13408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lohmann C, Friauf E (1996) Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats. J Comp Neurol 367:90–109

    CAS  PubMed  Google Scholar 

  • Lu Y, Jen PH (2001) GABAergic and glycinergic neural inhibition in excitatory frequency tuning of bat inferior collicular neurons. Exp Brain Res 141:331–339

    CAS  PubMed  Google Scholar 

  • Lumani A, Zhang H (2010) Responses of neurons in the rat’s dorsal cortex of the inferior colliculus to monaural tone bursts. Brain Res 1351:115–129

    CAS  PubMed  Google Scholar 

  • Ma CL, Kelly JB, Wu SH (2002) AMPA and NMDA receptors mediate synaptic excitation in the rat’s inferior colliculus. Hear Res 168:25–34

    CAS  PubMed  Google Scholar 

  • Maess B, Jacobsen T, Schroger E, Friederici AD (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37:561–571

    PubMed  Google Scholar 

  • Malmierca MS, Hackett TA (2010) Structural organization of the ascending auditory pathway. In: Rees A, Palmer AR (eds) The Oxford handbook of auditory science: auditory brain. Oxford University Press, New York, pp 9–41

  • Malmierca MS, Seip KL, Osen KK (1995) Morphological classification and identification of neurons in the inferior colliculus: a multivariate analysis. Anat Embryol (Berl) 191:343–350

    CAS  Google Scholar 

  • Malmierca MS, Izquierdo MA, Cristaudo S, Hernandez O, Perez-Gonzalez D, Covey E, Oliver DL (2008) A discontinuous tonotopic organization in the inferior colliculus of the rat. J Neurosci 28:4767–4776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malmierca MS, Blackstad TW, Osen KK (2011) Computer-assisted 3-D reconstructions of Golgi-impregnated neurons in the cortical regions of the inferior colliculus of rat. Hear Res 274:13–26

    PubMed  Google Scholar 

  • Manunta Y, Edeline JM (2004) Noradrenergic induction of selective plasticity in the frequency tuning of auditory cortex neurons. J Neurophysiol 92:1445–1463

    CAS  PubMed  Google Scholar 

  • Mascetti GG, Strozzi L (1988) Visual cells in the inferior colliculus of the cat. Brain Res 442:387–390

    CAS  PubMed  Google Scholar 

  • May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122

    PubMed  Google Scholar 

  • McCormick DA, Pape HC (1990) Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. J Physiol (Lond) 431:319–342

    CAS  Google Scholar 

  • Merchan M, Aguilar LA, Lopez-Poveda EA, Malmierca MS (2005) The inferior colliculus of the rat: quantitative immunocytochemical study of GABA and glycine. Neuroscience 136:907–925

    CAS  PubMed  Google Scholar 

  • Meredith MA, Allman BL, Keniston LP, Clemo HR (2012) Are bimodal neurons the same throughout the brain? In: Murray MM, Wallace MT (eds) The neural bases of multisensory processes. CRC Press, Boca Raton, http://www.ncbi.nlm.nih.gov/books/NBK92874/

    Google Scholar 

  • Metherate R, Weinberger NM (1989) Acetylcholine produces stimulus-specific receptive field alterations in cat auditory cortex. Brain Res 480:372–377

    CAS  PubMed  Google Scholar 

  • Metherate R, Intskirveli I, Kawai HD (2012) Nicotinic filtering of sensory processing in auditory cortex. Front Behav Neurosci 6:44. doi:10.3389/fnbeh.2012.00044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikell CB, Sheehy JP, Youngerman BE, McGovern RA, Wojtasiewicz TJ, Chan AK, Pullman SL, Yu Q, Goodman RR, Schevon CA, McKhann GM 2nd (2014) Features and timing of the response of single neurons to novelty in the substantia nigra. Brain Res 1542:79–84

    CAS  PubMed  Google Scholar 

  • Mill R, Coath M, Wennekers T, Denham SL (2011a) Abstract stimulus-specific adaptation models. Neural Comput 23:435–476

    PubMed  Google Scholar 

  • Mill R, Coath M, Wennekers T, Denham SL (2011b) A neurocomputational model of stimulus-specific adaptation to oddball and Markov sequences. PLoS Comput Biol 7:e1002117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller LM, Escabi MA, Read HL, Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160

    CAS  PubMed  Google Scholar 

  • Minks E, Jurák P, Chládek J, Chrastina J, Halámek J, Shaw DJ, Bareš M (2014) Mismatch negativity-like potential (MMN-like) in the subthalamic nuclei in Parkinson’s disease patients. J Neural Transm 121:1507–1522. doi:10.1007/s00702-014-1221-3

    PubMed  Google Scholar 

  • Molinari M, Dell’Anna ME, Rausell E, Leggio MG, Hashikawa T, Jones EG (1995) Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. J Comp Neurol 362:171–194

    CAS  PubMed  Google Scholar 

  • Monaghan DT, Cotman CW (1985) Distribution of N-methyl-D-aspartate-sensitive L-[3H]glutamate-binding sites in rat brain. J Neurosci 5:2909–2919

    CAS  PubMed  Google Scholar 

  • Monckton JE, McCormick DA (2002) Neuromodulatory role of serotonin in the ferret thalamus. J Neurophysiol 87:2124–2136

    CAS  PubMed  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168

    CAS  PubMed  Google Scholar 

  • Moran RJ, Campo P, Symmonds M, Stephan KE, Dolan RJ, Friston KJ (2013) Free energy, precision and learning: the role of cholinergic neuromodulation. J Neurosci 33:8227–8236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris RG (2013) NMDA receptors and memory encoding. Neuropharmacology 74:32–40

    CAS  PubMed  Google Scholar 

  • Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurons. Nature 278:850–852

    CAS  PubMed  Google Scholar 

  • Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42:313–329

    Google Scholar 

  • Näätänen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) “Primitive intelligence” in the auditory cortex. Trends Neurosci 24:283–288

    PubMed  Google Scholar 

  • Nagy A, Paróczy Z, Norita M, Benedek G (2005) Multisensory responses and receptive field properties of neurons in the substantia nigra and in the caudate nucleus. Eur J Neurosci 22:419–424

    PubMed  Google Scholar 

  • Nagy A, Eördegh G, Paróczy Z, Márkus Z, Benedek G (2006) Multisensory integration in the basal ganglia. Eur J Neurosci 24:917–924

    PubMed  Google Scholar 

  • Nakamura T, Michie PT, Fulham WR, Todd J, Budd TW, Schall U, Hunter M, Hodgson DM (2011) Epidural auditory event-related potentials in the rat to frequency and duration deviants: evidence of mismatch negativity? Front Psychol 2:367. doi:10.3389/fpsyg.2011.00367

    PubMed Central  PubMed  Google Scholar 

  • Nelken I (2014) Stimulus-specific adaptation and deviance detection in the auditory system: experiments and models. Biol Cybern 108:655–663. doi:10.1007/s00422-014-0585-7

    PubMed  Google Scholar 

  • Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223

    Google Scholar 

  • Nir Y, Vyazovskiy VV, Cirelli C, Banks MI, Tononi G (2013) Auditory responses and stimulus-specific adaptation in rat auditory cortex are preserved across NREM and REM sleep. Cereb Cortex. doi:10.1093/cercor/bht328

    PubMed  Google Scholar 

  • Olazabal UE, Moore JK (1989) Nigrotectal projection to the inferior colliculus: horseradish peroxidase transport and tyrosine hydroxylase immunohistochemical studies in rats, cats, and bats. J Comp Neurol 282:98–118

    CAS  PubMed  Google Scholar 

  • Oliver DL (2005) Neuronal organization in the inferior colliculus. In: Schreiner CE, Winer JA (eds) The inferior colliculus. New York, Springer, pp 69–131

    Google Scholar 

  • Oliver DL, Huerta MF (1992) Inferior and superior colliculi. In: Webster DB, Popper AN, Fay RR (eds) Springer handbook of auditory research, vol 1. The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 168–221

    Google Scholar 

  • Opitz B, Schröger E, Cramon DY von (2005) Sensory and cognitive mechanismsfor preattentive change detection in auditory cortex. Eur J Neurosci 21:531–535

  • Ouda L, Syka J (2012) Immunocytochemical profiles of inferior colliculus neurons in the rat and their changes with aging. Front Neural Circuits 6:68. doi:10.3389/fncir.2012.00068

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paloff AM, Hinova-Palova DV (1998) Topographical distribution of NADPH-diaphorase positive neurons in the cat’s inferior colliculus. J Hirnforsch 39:231–243

    CAS  PubMed  Google Scholar 

  • Paloff AM, Usunoff KG (2000) Tyrosine hydroxylase-like immunoreactive synaptic boutons in the inferior colliculus of the cat. Ann Anat 182:423–426

    CAS  PubMed  Google Scholar 

  • Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715–718

    CAS  PubMed  Google Scholar 

  • Parks TN (2000) The AMPA receptors of auditory neurons. Hear Res 147:77–91

    CAS  PubMed  Google Scholar 

  • Penzo MA, Pena JL (2009) Endocannabinoid-mediated long-term depression in the avian midbrain expressed presynaptically and postsynaptically. J Neurosci 29:4131–4139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Gonzalez D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879–2885

    PubMed  Google Scholar 

  • Perez-Gonzalez D, Hernandez O, Covey E, Malmierca MS (2012) GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7:e34297. doi:10.1371/journal.pone.0034297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perrault TJ Jr, Vaughan JW, Stein BE, Wallace MT (2003) Neuron-specific response characteristics predict the magnitude of multisensory integration. J Neurophysiol 90:4022–4026

    PubMed  Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17:3766–3777

    CAS  PubMed  Google Scholar 

  • Petralia RS, Wenthold RJ (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 318:329–354

    CAS  PubMed  Google Scholar 

  • Petralia RS, Yokotani N, Wenthold RJ (1994) Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J Neurosci 14:667–696

    CAS  PubMed  Google Scholar 

  • Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G (2001) Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study. Clin Neurophysiol 112:778–784

    CAS  PubMed  Google Scholar 

  • Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G (2002) Effect of deviant probability and interstimulus/interdeviant interval on the auditory N1 and mismatch negativity in the cat auditory cortex. Brain Res Cogn Brain Res 13:249–253

    PubMed  Google Scholar 

  • Ranganath C, Rainer G (2003) Neural mechanisms for detecting and remembering novel events. Nat Rev Neurosci 4:193–202

    CAS  PubMed  Google Scholar 

  • Reches A, Gutfreund Y (2008) Stimulus-specific adaptation in the gaze control system of the barn owl. J Neurosci 28:1523–1533

    CAS  PubMed  Google Scholar 

  • Reches A, Netser S, Gutfreund Y (2010) Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl. J Neurosci 30:6991–6998

    CAS  PubMed  Google Scholar 

  • Reese NB, Garcia-Rill E, Skinner RD (1995) Auditory input to the pedunculopontine nucleus. II. Unit responses. Brain Res Bull 37:265–273

    CAS  PubMed  Google Scholar 

  • Regehr WG (2012) Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol 4:a005702. doi:10.1101/cshperspect.a005702

    PubMed Central  PubMed  Google Scholar 

  • Regehr WG, Carey MR, Best AR (2009) Activity-dependent regulation of synapses by retrograde messengers. Neuron 63:154–170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rektor I, Bares M, Kubová D (2001) Movement-related potentials in the basal ganglia: a SEEG readiness potential study. Clin Neurophysiol 112:2146–2153

    CAS  PubMed  Google Scholar 

  • Richardson BD, Ling LL, Uteshev VV, Caspary DM (2011) Extrasynaptic GABA(A) receptors and tonic inhibition in rat auditory thalamus. PLoS One 6:e16508. doi:10.1371/journal.pone.0016508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romand R, Ehret G (1990) Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice. Brain Res Dev Brain Res 54:221–234

    CAS  PubMed  Google Scholar 

  • Rosburg T, Trautner P, Ludowig E, Schaller C, Kurthen M, Elger CE, Boutros NN (2007) Hippocampal event-related potentials to tone duration deviance in a passive oddball paradigm in humans. Neuroimage 37:274–281

    PubMed Central  PubMed  Google Scholar 

  • Rothman JS, Cathala L, Steuber V, Silver RA (2009) Synaptic depression enables neuronal gain control. Nature 457:1015–1018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouiller EM, Colomb E, Capt M, De Ribaupierre F (1985) Projections of the reticular complex of the thalamus onto physiologically characterized regions of the medial geniculate body. Neurosci Lett 53:227–232

    CAS  PubMed  Google Scholar 

  • Ruusuvirta T, Korhonen T, Penttonen M, Arikoski J (1995a) Hippocampal evoked potentials to pitch deviances in an auditory oddball situation in the rabbit: no human mismatch-like dependence on standard stimuli. Neurosci Lett 185:123–126

    CAS  PubMed  Google Scholar 

  • Ruusuvirta T, Korhonen T, Penttonen M, Arikoski J, Kivirikko K (1995b) Behavioral and hippocampal evoked responses in an auditory oddball situation when an unconditioned stimulus is paired with deviant tones in the cat: experiment II. Int J Psychophysiol 20:41–47

    CAS  PubMed  Google Scholar 

  • Ruusuvirta T, Korhonen T, Penttonen M, Arikoski J, Kivirikko K (1995c) Hippocampal event-related potentials to pitch deviances in an auditory oddball situation in the cat: experiment I. Int J Psychophysiol 20:33–39

    CAS  PubMed  Google Scholar 

  • Ruusuvirta T, Korhonen T, Arikoski J, Kivirikko K (1996) ERPs to pitch changes: a result of reduced responses to standard tones in rabbits. Neuroreport 7:413–416

    CAS  PubMed  Google Scholar 

  • Ruusuvirta T, Penttonen M, Korhonen T (1998) Auditory cortical event-related potentials to pitch deviances in rats. Neurosci Lett 248:45–48

    CAS  PubMed  Google Scholar 

  • Ruusuvirta T, Astikainen P, Wikgren J, Nokia M (2010) Hippocampus responds to auditory change in rabbits. Neuroscience 170:232–237

    CAS  PubMed  Google Scholar 

  • Ruusuvirta T, Lipponen A, Pellinen E, Penttonen M, Astikainen P (2013) Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats. PLoS One 8:e54624. doi:10.1371/journal.pone.0054624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saint Marie RL, Ostapoff EM, Morest DK, Wenthold RJ (1989) Glycine-immunoreactive projection of the cat lateral superior olive: possible role in midbrain ear dominance. J Comp Neurol 279:382–396

    CAS  PubMed  Google Scholar 

  • Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25:6076–6083

    CAS  PubMed  Google Scholar 

  • Sanes DH, Geary WA, Wooten GF, Rubel EW (1987) Quantitative distribution of the glycine receptor in the auditory brain stem of the gerbil. J Neurosci 7:3793–3802

    CAS  PubMed  Google Scholar 

  • Sato K, Kiyama H, Park HT, Tohyama M (1993) AMPA, KA and NMDA receptors are expressed in the rat DRG neurones. Neuroreport 4:1263–1265

    CAS  PubMed  Google Scholar 

  • Schofield BR (2010) Projections from auditory cortex to midbrain cholinergic neurons that project to the inferior colliculus. Neuroscience 166:231–240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schofield BR, Motts SD, Mellott JG (2011) Cholinergic cells of the pontomesencephalic tegmentum: connections with auditory structures from cochlear nucleus to cortex. Hear Res 279:85–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schröger E, Wolff C (1996) Mismatch response of the human brain to changes in sound localization. Neuroreport 7:3005–3008

    PubMed  Google Scholar 

  • Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N (1993) Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 163:53–57

    CAS  PubMed  Google Scholar 

  • Shinonaga Y, Takada M, OgawaMeguro R, Ikai Y, Mizuno N (1992) Direct projections from the globus pallidus to the midbrain and pons in the cat. Neurosci Lett 135:179–183

    CAS  PubMed  Google Scholar 

  • Shinonaga Y, Takada M, Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. J Comp Neurol 340:405–426

    CAS  PubMed  Google Scholar 

  • Shiramatsu TI, Kanzaki R, Takahashi H (2013) Cortical mapping of mismatch negativity with deviance detection property in rat. PLoS One 8:e82663. doi:10.1371/journal.pone.0082663

    PubMed Central  PubMed  Google Scholar 

  • Shore SE (2008) Auditory/somatosensory interactions. In: Adelman G, Smith BH (eds) The new encyclopedia of neurosciences. Elsevier Science, Amsterdam

    Google Scholar 

  • Siegel SJ, Connolly P, Liang Y, Lenox RH, Gur RE, Bilker WB, Kanes SJ, Turetsky BI (2003) Effects of strain, novelty, and NMDA blockade on auditory-evoked potentials in mice. Neuropsychopharmacology 28:675–682

    CAS  PubMed  Google Scholar 

  • Slabu L, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32:859–865

  • Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosc 32:1447–452

  • Smith PH, Bartlett EL, Kowalkowski A (2007) Cortical and collicular inputs to cells in the rat paralaminar thalamic nuclei adjacent to the medial geniculate body. J Neurophysiol 98:681–695

    PubMed  Google Scholar 

  • Stebbings KA, Lesicko AM, Llano DA (2014) The auditory corticocollicular system: molecular and circuit-level considerations. Hear Res 314:51–59

    CAS  PubMed  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255–266

    CAS  PubMed  Google Scholar 

  • Stein BE, Wallace MT (1996) Comparisons of cross-modality integration in midbrain and cortex. Prog Brain Res 112:289–299

    CAS  PubMed  Google Scholar 

  • Swanson LW, Hartman BK (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol 163:467–505

    CAS  PubMed  Google Scholar 

  • Taaseh N, Yaron A, Nelken I (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One 6:e23369. doi:10.1371/journal.pone.0023369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tardif E, Chiry O, Probst A, Magistretti PJ, Clarke S (2003) Patterns of calcium-binding proteins in human inferior colliculus: identification of subdivisions and evidence for putative parallel systems.Neuroscience 116:1111–1121

    CAS  PubMed  Google Scholar 

  • Tebecis AK (1970) Effects of monoamines and amino acids on medial geniculate neurones of the cat. Neuropharmacology 9:381–390

    CAS  PubMed  Google Scholar 

  • Tebecis AK (1972) Cholinergic and non-cholinergic transmission in the medial geniculate nucleus of the cat. J Physiol 226:153–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15:3092–3103

    CAS  PubMed  Google Scholar 

  • Tong L, Altschuler RA, Holt AG (2005) Tyrosine hydroxylase in rat auditory midbrain: distribution and changes following deafness. Hear Res 206:28–41

    CAS  PubMed  Google Scholar 

  • Tongjaroenbuangam W, Jongkamonwiwat N, Phansuwan-Pujito P, Casalotti SO, Forge A, Dodson H, Govitrapong P (2006) Relationship of opioid receptors with GABAergic neurons in the rat inferior colliculus. Eur J Neurosci 24:1987–1994

    CAS  PubMed  Google Scholar 

  • Trattner B, Berner S, Grothe B, Kunz L (2013) Depolarization-induced suppression of a glycinergic synapse in the superior olivary complex by endocannabinoids. J Neurochem 127:78–90

    CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398

    CAS  PubMed  Google Scholar 

  • Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453

    CAS  PubMed  Google Scholar 

  • Umbricht D, Vyssotki D, Latanov A, Nitsch R, Lipp HP (2005) Deviance-related electrophysiological activity in mice: is there mismatch negativity in mice? Clin Neurophysiol 116:353–363

    CAS  PubMed  Google Scholar 

  • Varela C (2014) Thalamic neuromodulation and its implications for executive networks. Front Neural Circuits 8:69. doi:10.3389/fncir.2014.00069

    PubMed Central  PubMed  Google Scholar 

  • Varela C, Sherman SM (2007) Differences in response to muscarinic activation between first and higher order thalamic relays. J Neurophysiol 98:3538–3547

    CAS  PubMed  Google Scholar 

  • Varela C, Sherman SM (2009) Differences in response to serotonergic activation between first and higher order thalamic nuclei. Cereb Cortex 19:1776–1786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vater M, Braun K (1994) Parvalbumin, calbindin D-28 k, and calretinin immunoreactivity in the ascending auditory pathway of horseshoe bats. J Comp Neurol 341:534–558

    CAS  PubMed  Google Scholar 

  • Venecia RK de, Smelser CB, Lossman SD, McMullen NT (1995) Complementary expression of parvalbumin and calbindin D-28 k delineates subdivisions of the rabbit medial geniculate body. J Comp Neurol 359:595–612

  • Vertes RP, Linley SB, Hoover WB (2010) Pattern of distribution of serotonergic fibers to the thalamus of the rat. Brain Struct Funct 215:1–28

    CAS  PubMed  Google Scholar 

  • Wenstrup JJ (2005) The tectothalamic system. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 69–131

    Google Scholar 

  • Westerman LA, Smith RL (1985) Rapid adaptation depends on the characteristic frequency of auditory nerve fibers. Hear Res 17:197–198

    CAS  PubMed  Google Scholar 

  • Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678–682

    CAS  PubMed  Google Scholar 

  • Wilson RI, Kunos G, Nicoll RA (2001) Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31:453–462

    CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, Fay RR (eds) Springer handbook of auditory research, vol 1. The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 222–409

    Google Scholar 

  • Winer JA, Larue DT (1996) Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proc Natl Acad Sci U S A 93:3083–3087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A 93:8005–8010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13:532–540

    PubMed  Google Scholar 

  • Wu C, Stefanescu RA, Martel DT, Shore SE (2014) Listening to another sense: somatosensory integration in the auditory system. Cell Tissue Res. doi:10.1007/s00441-014-2074-7

    Google Scholar 

  • Wynne B, Robertson D (1997) Somatostatin and substance P-like immunoreactivity in the auditory brainstem of the adult rat. J Chem Neuroanat 12:259–266

    CAS  PubMed  Google Scholar 

  • Yamauchi K, Yamadori T (1982) Retinal projection to the inferior colliculus in the rat. Acta Anat (Basel) 114:355–360

    CAS  Google Scholar 

  • Yaron A, Hershenhoren I, Nelken I (2012) Sensitivity to complex statistical regularities in rat auditory cortex. Neuron 76:603–615

    CAS  PubMed  Google Scholar 

  • Yasui Y, Nakano K, Kayahara T, Mizuno N (1991) Nondopaminergic projections from the substantia nigra pars lateralis to the inferior colliculus in the rat. Brain Res 559:139–144

    CAS  PubMed  Google Scholar 

  • Yu XJ, Xu XX, He S, He J (2009) Change detection by thalamic reticular neurons. Nat Neurosci 12:1165–1170

    CAS  PubMed  Google Scholar 

  • Zahar Y, Reches A, Gutfreund Y (2009) Multisensory enhancement in the optic tectum of the barn owl: spike count and spike timing. J Neurophysiol 101:2380–2394

    PubMed  Google Scholar 

  • Zettel ML, Carr CE, O’Neill WE (1991) Calbindin-like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnelli. J Comp Neurol 313:1–16

    CAS  PubMed  Google Scholar 

  • Zhao L, Liu Y, Shen L, Feng L, Hong B (2011) Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience 181:163–174

    CAS  PubMed  Google Scholar 

  • Zhao Y, Tzounopoulos T (2011) Physiological activation of cholinergic inputs controls associative synaptic plasticity via modulation of endocannabinoid signaling. J Neurosci 31:3158–3168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Rubio ME, Tzounopoulos T (2009) Distinct functional and anatomical architecture of the endocannabinoid system in the auditory brainstem. J Neurophysiol 101:2434–2446

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel S. Malmierca.

Additional information

Daniel Duque and Yaneri A. Ayala contributed equally to this work.

Financial support was provided by the Spanish MINECO (BFU2013-43608-P) and JCYL (SA343U14) to M.S.M.; D.D. held a fellowship from the Spanish MINECO (BES-2010-035649); Y.A.A. held fellowships from the Mexican CONACyT (216106) and SEP.

The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duque, D., Ayala, Y.A. & Malmierca, M.S. Deviance detection in auditory subcortical structures: what can we learn from neurochemistry and neural connectivity?. Cell Tissue Res 361, 215–232 (2015). https://doi.org/10.1007/s00441-015-2134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2134-7

Keywords

Navigation