Skip to main content
Log in

Stratified Flow Past a Hill: Dividing Streamline Concept Revisited

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The Sheppard formula (Q J R Meteorol Soc 82:528–529, 1956) for the dividing streamline height \(H_\mathrm{s}\) assumes a uniform velocity \(U_\infty \) and a constant buoyancy frequency N for the approach flow towards a mountain of height h, and takes the form \(H_\mathrm{s}/h=\left( {1-F} \right) \), where \(F=U_{\infty }/Nh\). We extend this solution to a logarithmic approach-velocity profile with constant N. An analytical solution is obtained for \(H_\mathrm{s}/h\) in terms of Lambert-W functions, which also suggests alternative scaling for \(H_\mathrm{s}/h\). A ‘modified’ logarithmic velocity profile is proposed for stably stratified atmospheric boundary-layer flows. A field experiment designed to observe \(H_\mathrm{s}\) is described, which utilized instrumentation from the spring field campaign of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. Multiple releases of smoke at \(F\approx 0.3\)–0.4 support the new formulation, notwithstanding the limited success of experiments due to logistical constraints. No dividing streamline is discerned for \(F\approx 10\), since, if present, it is too close to the foothill. Flow separation and vortex shedding is observed in this case. The proposed modified logarithmic profile is in reasonable agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Apsley DD, Castro IP (1996) Numerical modeling of flow and dispersion around Cinder Cone Butte. Atmos Environ 31(7):1059–1071

    Article  Google Scholar 

  • Baines PG (1979a) Observations of stratified flow over two-dimensional obstacles in fluid of finite depth. Tellus 31:351–371

  • Baines PG (1979b) Observations of stratified flow past three-dimensional barriers. J Geophys Res 84:7834–7838

  • Baines PG (1987) Upstream blocking and airflow over mountains. Annu Rev Fluid Mech 19(1):75–95

    Article  Google Scholar 

  • Baines PG (1998) Topographic effects in stratified flows. Cambridge University Press, Cambridge, UK, 500 pp

  • Baines PG, Smith RB (1993) Upstream stagnation points in stratified flow past obstacles. Dyn Atmos Oceans 18(1–2):105–113

    Article  Google Scholar 

  • Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, Cambridge, UK, 386 pp

  • Batchelor GK (1983) An introduction to fluid dynamics. Cambridge University Press, Cambridge, UK, 615 pp

  • Beaucage P, Brower MC, Tensen J (2014) Evaluation of four numerical wind flow models for wind resource mapping. Wind Energy 17(2):197–208

    Article  Google Scholar 

  • Belcher SE, Hunt JCR (1998) Turbulent flow over hills and waves. Annu Rev Fluid Mech 30(1):507–538

    Article  Google Scholar 

  • Boyer DL, Davies PA (2000) Laboratory studies of orographic effects in rotating and stratified flows. Annu Rev Fluid Mech 32(1):165–202

    Article  Google Scholar 

  • Brighton PWM (1978) Strongly stratified flow past three-dimensional obstacles. Q J R Meteorol Soc 104:289–307

    Article  Google Scholar 

  • Carruthers DJ, Hunt JCR (1990) Fluid mechanics of airflow over hills: turbulence, fluxes, and waves in the boundary layer. In: Blumen W (ed) Atmospheric processes in complex terrain. American Meteorological Society, Boston, pp 83–103

    Google Scholar 

  • Chomaz JM, Bonneton P, Hopfinger EJ (1993) The structure of the near wake of a sphere moving horizontally in a stratified fluid. J Fluid Mech 254:1–21

    Article  Google Scholar 

  • Chomaz JM, Billant P, Gallaire F (2004) Hydrodynamic instability and transition to turbulence for quasi two-dimensional flows, 2D or not 2D? In: Uijttewaal WSJ, Jirka GH (eds) Shallow flows: research presented at the international symposium on shallow flows. Taylor & Francis Group, London, pp 15–22

    Google Scholar 

  • Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine RJ, Wilson RB, Lee RF, Peters WD, Brode RW (2005) AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization. J Appl Meteorol 44(5):682–693

    Article  Google Scholar 

  • Davis RE (1969) The two-dimensional flow of a stratified fluid over an obstacle. J Fluid Mech 36(1):127–143

    Article  Google Scholar 

  • Ding L, Calhoun RJ, Street RL (2003) Numerical simulation of strongly stratified flow over a three-dimensional hill. Boundary-Layer Meteorol 107(1):81–11

    Article  Google Scholar 

  • Doyle JD, Durran DR (2007) Rotor and subrotor dynamics in the lee of three-dimensional terrain. J Atmos Sci 64:4202–4221

    Article  Google Scholar 

  • Drazin PG (1961) On the steady flow of a fluid of variable density past an obstacle. Tellus 13:239–251

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux–profile relationships. Boundary-Layer Meteorol 7:363–372

    Article  Google Scholar 

  • Fernando JF, Pardyjak ER (2013) Field studies delve into the intricacies of mountain weather. EOS 94(36):313–320

    Article  Google Scholar 

  • Fernando HJS, Weil JC (2010) Whither the stable boundary layer? A shift in the research agenda. Bull Am Meteorol Soc 91(11):1475–1484

    Article  Google Scholar 

  • Fernando HJS, Pardyjak ER, Di Sabatino S., Chow FK, De Wekker SFJ, Hoch SW, Hacker J, Pace JC, Pratt T, Pu Z, Steenburgh JW, Whiteman CD, Wang Y, Zajic D, Balsley B, Dimitrova R, Emmitt GD, Higgins CW, Hunt JCR, Knievel JC, Lawrence D, Liu Y, Nadeau DF, Kit E, Blomquist BW, Conry P, Coppersmith RS, Creegan E, Felton M, Grachev A, Gunawardena N, Hang C, Hocut CM, Huynh G, Jeglum ME, Jensen D, Kulandaivelu V, Lehner M, Leo LS, Liberzon D, Massey JD, McEnerney K, Pal S, Price T, Sghiatti M, Silver Z, Thompson M, Zhang H, Zsedrovits T (2015) The MATERHORN—unraveling the intricacies of mountain weather. Bull Am Meteorol Soc. e-View. doi:10.1175/BAMS-D-13-00131.1

  • Greenslade MD (1994) Strongly stratified airflow over and around mountains. In: Castro IP, Rockliff NJ (eds) Stably stratified flows: flow and dispersion over topography. Oxford University Press, Oxford, pp 25–37

    Google Scholar 

  • Grubišic V, Doyle JD, Kuettner J, Dirks R, Cohn SA, Pan LL, Mobbs S, Smith RB, Whiteman CD, Czyzyk S, Vosper S, Weissmann M, Haimov S, De Wekker SFJ, Chow FK (2008) The Terrain-Induced Rotor Experiment. Bull Am Meteorol Soc 89(10):1513–1533

    Article  Google Scholar 

  • Hanazaki H (1989) Drag coefficient and upstream influence in three-dimensional stratified flow of finite depth. Fluid Dyn Res 4(5):317–332

    Article  Google Scholar 

  • Hunt JCR, Snyder WH (1980) Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J Fluid Mech 96(4):671–704

    Article  Google Scholar 

  • Jarosz E, Wijesekera HW, Teague WJ, Fribance DB, Moline MA (2014) Observations on stratified flow over a bank at low Froude numbers. J Geophys Res Oceans 119(9):6403–6421

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 289 pp

  • Kunkel GJ, Marusic I (2006) Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J Fluid Mech 548:375–402

    Article  Google Scholar 

  • Lee SM, Giori W, Princevac M, Fernando HJS (2006) Implementation of a stable PBL turbulence parameterization for the mesoscale model MM5: nocturnal flow in complex terrain. Boundary-Layer Meteorol 119:109–134

    Article  Google Scholar 

  • Lin Q, Lindberg WR, Boyer DL, Fernando HJS (1992) Stratified flow past a sphere. J Fluid Mech 240:315–354

    Article  Google Scholar 

  • Lin Q, Boyer DL, Fernando HJS (1993) Internal waves generated by the turbulent wake of a sphere. Exp Fluids 15(2):147–154

    Article  Google Scholar 

  • Long RR (1953) Some aspects of the flow of stratified fluids I: a theoretical investigation. Tellus 5:42–58

    Article  Google Scholar 

  • Long RR (1954) Some aspects of the flow of stratified fluids II: experiments with a two-fluid system. Tellus 6(2):97–115

    Article  Google Scholar 

  • Long RR (1955) Some aspects of the flow of stratified fluids III: continuous density gradients. Tellus 7(3):341–357

    Article  Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45

    Article  Google Scholar 

  • Miglietta MM, Rotunno R (2005) Simulations of moist nearly neutral flow over a ridge. J Atmos Sci 62(5):1410–1427

    Article  Google Scholar 

  • Monti P, Fernando HJS, Princevac M, Chan WC, Kowalewski TA, Pardyjak ER (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59:2513–2534

    Article  Google Scholar 

  • Politovich MK, Goodrich RK, Morse CS, Yates A, Barron R, Cohn SA (2011) The Juneau terrain-induced turbulence alert system. Bull Am Meteorol Soc 92(3):299–313

    Article  Google Scholar 

  • Queney P (1948) The problem of airflow over mountains: a summary of theoretical studies. Bull Am Meteorol Soc 29:16–26

    Google Scholar 

  • Ryan W, Lamb B (1984) Determination of dividing streamline heights and Froude numbers for predicting plume transport in complex terrain. J Air Pollut Control Assoc 34(2):152–155

    Article  Google Scholar 

  • Ryan W, Lamb B, Robinson E (1984) An atmospheric tracer investigation of transport and diffusion around a large, isolated hill. Atmos Environ 18:2003–2021

    Article  Google Scholar 

  • Scorer RS (1949) Theory of waves in the lee of mountains. Q J R Meteorol Soc 75(323):41–56

    Article  Google Scholar 

  • Sheppard PA (1956) Airflow over mountains. Q J R Meteorol Soc 82:528–529

    Article  Google Scholar 

  • Smith RB (1988) Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J Atmos Sci 45(24):3889–3896

    Article  Google Scholar 

  • Smith RB (1989) Mountain-induced stagnation points in hydrostatic flow. Tellus A 41(3):270–274

    Article  Google Scholar 

  • Smith RB (1990) Why can’t stably stratified air rise over high ground. In: Blumen W (ed) Atmospheric processes in complex terrain. American Meteorological Society, Boston, pp 105–107

    Google Scholar 

  • Smith RB (2002) Stratified flow over topography. In: Grimshaw R (ed) Environmental stratified flows, vol 3. Springer, Berlin, pp 119–159

    Chapter  Google Scholar 

  • Smith RB, Grønås S (1993) Stagnation points and bifurcation in 3D mountain airflow. Tellus A 45(1):28–43

    Article  Google Scholar 

  • Snyder WH, Lawson RE, Thompson RS, Holzworth GC (1980) Observations of flow around Cinder Cone Butte, Idaho. Environmental Protection Agency Report, EPA-600/7-80-150, Research Triangle Park, NC

  • Snyder WH, Thompson RS, Eskridge RE, Lawson RE, Castro AP, Lee JT, Hunt JCR, Ogawa Y (1985) The structure of strongly stratified flow over hills: dividing-streamline concept. J Fluid Mech 152:249–288

    Article  Google Scholar 

  • Spangler TC (1987) Comparison of actual dividing-streamline heights to height predictions using the Froude number. J Clim Appl Meteorol 26(1):204–207

    Article  Google Scholar 

  • Steeneveld GJ, Holtslag AAM, Nappo CJ, Van de Wiel BJH, Mahrt L (2008) Exploring the possible role of small-scale terrain drag on stable boundary layers over land. J Appl Meteorol Climatol 47(10):2518–2530

    Article  Google Scholar 

  • Streutker DR, Glenn NF (2006) LiDAR measurement of Sagebrush Steppe vegetation heights. Remote Sensing Environ 102(1–2):135–145

    Article  Google Scholar 

  • Suzuki M, Kuwahara K (1992) Stratified flow past a bell-shaped hill. Fluid Dyn Res 9(1–3):1–18

    Article  Google Scholar 

  • Tartakovsky D, Broday DM, Stern E (2013) Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain. Environ Pollut 179:138–145

    Article  Google Scholar 

  • United States Geological Survey (USGS) (2013) The National Map. Data Retrieved 29 Jul 2013

  • Vosper SB (2004) Inversion effects on mountain lee waves. Q J R Meteorol Soc 130(600):1723–1748

    Article  Google Scholar 

  • Vosper SB, Castro IP, Snyder WH, Mobbs SD (1999) Experimental studies of strongly stratified flow past three-dimensional orography. J Fluid Mech 390:223–249

    Article  Google Scholar 

  • Xu Y, Fernando HJS, Boyer D (1995) Turbulent wakes of stratified flows past a cylinder. Phys Fluids 7(9):2243–2255

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by Office of Naval Research Award # N00014-11-1-0709, Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. The authors wish to thank Brent Fields, Kevin Wilcock and Jeff Wintle (Dugway Proving Ground Explosive Division); without their technical support and expertise, the Materhorn smoke-visualization experiments would have not been possible. In addition, the authors wish to thank Michael Carston and Paul Broderick (Dugway Proving Ground Meteorological Division) for their support and invaluable technical contributions to the set-up and maintenance of the large suite of instruments deployed during the MATERHORN Program. We are also grateful for helpful comments provided by three anonymous reviewers, which led to considerable improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura S. Leo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leo, L.S., Thompson, M.Y., Di Sabatino, S. et al. Stratified Flow Past a Hill: Dividing Streamline Concept Revisited. Boundary-Layer Meteorol 159, 611–634 (2016). https://doi.org/10.1007/s10546-015-0101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0101-1

Keywords

Navigation