Skip to main content

Stratified Flow Over Topography

  • Chapter
Environmental Stratified Flows

Part of the book series: Topics in Environmental Fluid Mechanics ((EFMS,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebischer, U. and C. Schär, 1998: Low-level potential vorticity and cyclogenesis to the lee of the Alps. J. Atmos. Sci., 55, 186–207.

    Article  Google Scholar 

  • Afanasyev, Y. D. and W. R. Peltier, 1998: The three-dimensionalization of stratified flow over two-dimensional topography. J. Atmos. Sci., 55, 19–39.

    Article  Google Scholar 

  • Andreassen, Ø., C. E. Wasberg, D. C. Fritts, and J. R. Isler, 1994: Gravity wave breaking in two and three-dimensions: 1. Model description and comparison of two-dimensional evolutions. J. Geophys. Res., 99, 8095–8108.

    Article  Google Scholar 

  • Atkinson, B. W., 1981: Meso-scale Atmospheric Circulations. Academic Press, 495pp.

    Google Scholar 

  • Bacmeister, J. T. and R. T. Pierrehumbert, 1988: On high-drag states in nonlinear stratified flow over an obstacle. J. Atmos. Sci., 45, 63–80.

    Article  Google Scholar 

  • Bacmeister, J. T. and M. R. Schoeberl, 1989: Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci., 46, 2109–2134.

    Article  Google Scholar 

  • Baines, P. G., 1995: Topographic Effects in Stratified Flows. Cambridge University Press, 488pp.

    Google Scholar 

  • Baines, P. G. and R. B. Smith, 1993: Upstream stagnation points in stratified flow past obstacles. Dyn. Atmos. Oceans, 18, 105–113.

    Article  Google Scholar 

  • Batchelor, G. K., 1967: An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp.

    Google Scholar 

  • Blumen, W., 1972: Geostrophic adjustment. Geophys. Space Phys., 10, 485–528.

    Article  Google Scholar 

  • Blumen, W., 1985: Reflection of hydrostatic gravity-waves in a stratified shear-flow. 1. Theory. J. Atmos. Sci, 42, 2255–2263.

    Google Scholar 

  • Booker, J. R., and F. P. Bretherton, 1967: Critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513–539.

    Google Scholar 

  • Bougeault, P., B. Benech, P. Bessemoulin, B. Carissimo, A. Jansa Clar, J. Pelon, M. Petitdidier, and E. Richard, 1997: PYREX: a summary of findings. Bull. Amer. Meteor. Soc., 78, 637–650.

    Article  Google Scholar 

  • Bougeault, P. et al., 2001: The Mesoscale Alpine Programme Special Observing Period. Bull. Amer. Meteor. Soc., In press.

    Google Scholar 

  • Bretherton, F. P., 1966: Propagation of groups of internal waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466–480.

    Google Scholar 

  • Bretherton, F. P. and C. J. R. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy, Soc. London A, 302, 529–554.

    Google Scholar 

  • Broad, A. S., 1995: Linear theory of momentum fluxes in 3-D flows with turning of the mean wind with height. Quart. J. R. Meteor. Soc., 121, 1891–1902.

    Google Scholar 

  • Carruthers, D. J. and J. C. R Hunt, 1990: Fluid mechanics of airflow over hills: turbulence, fluxes and waves in the boundary layer. Atmospheric Processes over Complex Terrain, Meteor. Monogr., W. Blumen, Ed., Amer, Met. Soc, No. 23, 83–107.

    Google Scholar 

  • Clark, T. L. and W. R. Peltier, 1977: On the evolution and stability of finite amplitude mountain waves. J. Atmos. Sci, 34, 1715–1730.

    Article  Google Scholar 

  • Clark, T. L. and W. R. Peltier, 1984: Critical level reflection and the resonant growth of non-linear mountain waves. J. Atmos. Sci., 41, 3122–3134.

    Google Scholar 

  • Crapper, G. D., 1962: Waves in the lee of a mountain with elliptical contours. Philos. Trans. Roy. Soc. London, A, 254, 601–623.

    Article  Google Scholar 

  • Crook, A. N., T. L. Clark and M. W. Moncrieff, 1990: The Denver cyclone, Part I: Generation in low Froude number flow. J. Atmos. Sci., 47, 2725–2741.

    Article  Google Scholar 

  • Danielsen, E. F., 1990: In defense of Ertel’s potential vorticity and in general applicability as a meteorological tracer. J. Atmos. Sci., 47, 2013–2020.

    Article  Google Scholar 

  • Derzho, O. G. and R. Grimshaw, 1997: Solitary waves with a vortex core in a shallow layer of stratified fluid. Phys.Fluids, 9, 3378–3385.

    Article  CAS  Google Scholar 

  • Dörnbrack, A., T. Gerz, and U. Schumann, 1995: Turbulent breaking of overturning gravity waves below a critical level. Appl. Sci. Res., 54, 163–176.

    Google Scholar 

  • Doyle, J. D., D. R. Durran, C. Chen, B. A. Colle, M. Georgelin, V. Grubi_i_, W. R.. Hsu, C. Y. Huang, D. Landau, Y. L. Lin, G.S. Poulos, W.Y. Sun, D. B. Weber, M. G. Wurtele, and M. Xue, 2000: An intercomparison of model-predicted wave breaking for the 11 January 1972 Boulder windstorm. Mon. Wea. Rev., 128, 901–914.

    Google Scholar 

  • Durran, D. R., 1986a: Mountain waves. Mesoscale Meteorology and Forecasting. P. Ray, Ed., Amer. Meteor. Soc., 472–492.

    Google Scholar 

  • Durran, D. R., 1986b: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 2527–2543.

    Article  Google Scholar 

  • Durran, D. R., 1990: Mountain waves and downslope flows. Atmospheric processes over Complex Terrain, Meteor. Monographs, W. Blumen, Ed., Amer. Met. Soc, No. 23, 59–81.

    Google Scholar 

  • Durran, D. R., 1998: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer, 472pp.

    Google Scholar 

  • Durran, D. R. and J. B. Klemp, 1987: Another look at downslope winds, Part II: Non-linear amplification beneath wave-overturning layers. J. Atmos.Sci., 44, 3402–3412.

    Article  Google Scholar 

  • Duynkerke, P. G., 1988: Application of the E-e turbulence closure model to the neutral and stable atmospheric boundary layer. J. Atmos. Sci., 45, 865–880.

    Google Scholar 

  • Eliassen, A. and E. Palm, 1954: Energy flux for combined gravitational-sound waves. Institute for Weather and Climate Research, Oslo, Publ. No. 1.

    Google Scholar 

  • Ertel, H., 1942: Ein newer hydrodynamischer Wirbelsatz. Meteorol. Z., 59, 271–281.

    Google Scholar 

  • Fritts, D. C., J. F. Garten, and O. Andreassen, 1996: Wave breaking and transition to turbulence in stratified shear flows. J. Atmos. Sci., 53, 1057–1085.

    Google Scholar 

  • Fritts, D. C. and J. R. Isler, 1994: Gravity-wave breaking in 2 and 3 dimensions. J. Geophys. Res., 99, 8109–8123.

    Article  Google Scholar 

  • Gheusi, F., J. Stein, and O. S. Eiff, 2000: A numerical study of threedimensional orographic gravity-wave breaking observed in a hydraulic tank. J. Fluid Mech., 410, 67–99.

    Article  Google Scholar 

  • Gill, E. A., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.

    Google Scholar 

  • Gjevik, B. and T. Marthinsen, 1978: Three-dimensional lee-wave pattern. Quart. J. Roy. Meteor. Soc., 104, 947–957.

    Article  Google Scholar 

  • Gossard, E. E. and W. H Hooke, 1975: Waves in the Atmosphere, Elsevier, 456pp.

    Google Scholar 

  • Grubisic, V., R. B. Smith and C. Schär, 1995: The effect of bottom friction on shallow-water flow past an isolated obstacle. J. Atmos. Sci., 52, 1985–2005.

    Google Scholar 

  • Grubisic, V. and P. K. Smolarkiewicz, 1997: The effect of critical levels on 3D orographic flows: linear regime. J. Atmos. Sci., 54, 1943–1960.

    Article  Google Scholar 

  • Haynes, P. H. and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional and other forces. J. Atmos. Sci., 44, 828–841.

    Google Scholar 

  • Haynes, P. H. and M. E. McIntyre, 1990: On the conservation and impermeability theorems for potential vorticity. J. Atmos. Sci., 47, 2021–2031.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    Article  Google Scholar 

  • Houghton, D. D. and E. Isaacson, 1968: Mountain winds. Studies in Num. Anal., 2, 21–52.

    Google Scholar 

  • Huppert, H. E., and J. W. Miles, 1969: Lee waves in stratified flow, Part 3: Semi-elliptical obstacle. J. Fluid Mech., 35, 481–496.

    Google Scholar 

  • Jiang, Q. and R. B. Smith, 1999: V-waves, bow waves and wakes in supercritical hydrostatic flow. J. Fluid Mech., 406, 27–53.

    Google Scholar 

  • Jiang, Q. and R. B. Smith, 2000: Idealized hydraulic jumps in two-layer flow, Part II: Under a passive layer. Tellus, 52A, In Press.

    Google Scholar 

  • Klemp, J. B. and D. K. Lilly, 1975: The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320–339.

    Article  Google Scholar 

  • Kuettner, J., 1939: Moazagotl and Fohnwelle, Beitr. Phys. frei Atmos., 25, 79–114.

    Google Scholar 

  • Lighthill, J., 1978: Waves in Fluids, Cambridge University Press, 504p.

    Google Scholar 

  • Lilly, D. K. and E. J. Zipser, 1972: The Front Range windstorm of 11 January 1972 — a meteorological narrative. Weatherwise, 25, 56–63.

    Article  Google Scholar 

  • Long, R. R., 1953: Some aspects of the flow of stratified fluids, A theoretical investigation. Tellus, 5, 42–58.

    Google Scholar 

  • Long, R.R., 1955: Some aspects of the flow of stratified fluids, III. Continuous density gradients. Tellus, 7, 341–357.

    Google Scholar 

  • Lyra, G., 1943: Theorie der stationären Leewellenströmung in freier Atmosphäre. Z. Angew. Math. Mech., 23, 1–28.

    Google Scholar 

  • Marthinsen, T., 1980: Three-dimensional lee waves, Quart. J. Roy. Meteor. Soc., 106, 569–580.

    Article  Google Scholar 

  • McIntyre, M. E. and W. A. Norton, 1990: Dissipative wave-mean interactions and the transport of vorticity and potential vorticity. J. Fluid Mech., 212, 403–435.

    Google Scholar 

  • Mehrotra, S. C., and R. E. Kelly, 1973: On the question of non-uniqueness of internal hydraulic jumps and drops in a two-fluid system. Tellus, 25, 560–567.

    Google Scholar 

  • Mellor, G. L. and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791–1806.

    Article  Google Scholar 

  • Mellor, G. L. and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys Space Phys., 20, 851–875.

    Google Scholar 

  • Miranda, P. M. and I. N. James, 1992: Non-linear three-dimensional effects on gravity wave drag: Splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118, 1057–1081.

    Article  Google Scholar 

  • Nance, L. B. and D. R. Durran, 1998: A modeling study of nonstationary trapped mountain lee waves. Part II: Nonlinearity. J. Atmos. Sci., 55, 1429–1445.

    Article  Google Scholar 

  • Olafsson, H. and P. Bougeault, 1996: Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci, 53, 2465–2489.

    Google Scholar 

  • Olafsson, H. and P. Bougeault, 1997: The effect of rotation and surface friction on orographic drag. J. Atmos. Sci, 54, 193–210.

    Google Scholar 

  • Pan, F. and R. B. Smith, 1998: Gap winds and wakes: SAR observations and numerical simulations. J. Atmos. Sci., 56, 905–923.

    Google Scholar 

  • Peltier, W. R. and T. L. Clark, 1979: Evolution and Stability of Finite-Amplitude Mountain Waves.2. Surface-Wave Drag and Severe Downslope Windstorms. J. Atmos. Sci, 36, 1498–1529.

    Article  Google Scholar 

  • Queney, P., 1947: Theory of perturbations in stratified currents with applications to airflow over mountain barriers. Dept. of Meteorology, Univ. of Chicago, Misc. Report No. 23.

    Google Scholar 

  • Queney, P., G. Corby, N. Gerbier, H. Koschnieder, and H. Zierep, 1960: The airflow over mountains. WMO Tech. Note No. 34, World Meteorological Organization, Geneva, 135pp.

    Google Scholar 

  • Raymond, D. J., 1993: Nonlinear balance and potential-vorticity thinking at large Rossby number. Quart. J. Roy. Meteor. Soc., 118, 987–1015.

    Google Scholar 

  • Richard, E., P. Mascart, and E. C. Nickerson, 1989: Role of surface friction in downslope windstorms. J. Appl. Meteor., 28, 241–251.

    Google Scholar 

  • Rottman, J. W., D. Broutman, and R. Grimshaw, 1996: Numerical simulations of uniformly stratified fluid flow over topography. J. Fluid Mech., 306, 1–30.

    CAS  Google Scholar 

  • Rotunno, R., V. Grubii, and P. K. Smolarkiewicz, 1999: Vorticity and potential vorticity in mountain wakes. J. Atmos. Sci., 56, 2796–2810.

    Article  Google Scholar 

  • Rotunno, R. and P. K.. Smolarkiewicz, 1991: Further results on lee vorticies in low-Froude-number flow. J. Atmos. Sci., 48, 2204–2211.

    Article  Google Scholar 

  • Samelson, R. M., 1992: Supercritical marine-layer flow along a smoothly varying coastline. J. Atmos. Sci., 49, 1571–1584.

    Article  Google Scholar 

  • Sawyer, J. S. 1962: Gravity waves in the atmosphere as a three-dimensional problem. Quart. J. Roy. Meteor. Soc., 88, 412–427.

    Google Scholar 

  • Schär, C., 1993: A generalization of Bernoulli’s Theorem. J. Atmos. Sci., 50, 1437–1443.

    Google Scholar 

  • Schär, C and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534–554.

    Google Scholar 

  • Schär, C. and R. B. Smith, 1993a: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 1373–1400.

    Google Scholar 

  • Schär, C. and R. B. Smith, 1993b: Shallow-water flow past isolated topography. Part II: Transition to vortex shedding. J. Atmos. Sci., 50, 1401–1412.

    Google Scholar 

  • Schmid, H., and A. Dörnbrack, 1996: Simulation of breaking gravity waves during the south foehn of January 7–13, 1996: Beitr. Phys. Atmos., 72, 287–301.

    Google Scholar 

  • Schumann, U., 1977: Realizability of reynolds stress turbulence models. Phys. Fluids, 20, 721–725.

    Article  Google Scholar 

  • Scinocca, J. F., 1995: The mixing of mass and momentum by Kelvin-Helmholtz billows. J. Atmos. Sci., 52, 2509–2530.

    Article  Google Scholar 

  • Scorer, R. S. 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 82, 75–81.

    Google Scholar 

  • Scorer, R. S. and M. Wilkinson, 1956: Waves in the lee of an isolated hill. Quart. J. Roy. Meteor. Soc., 82, 419–427.

    Google Scholar 

  • Sharman R. D. and M. G. Wurtele 1983: Ship waves and lee waves. J. Atmos. Sci, 40, 396–427.

    Article  Google Scholar 

  • Shutts, G. J. and A. Gadian, 2000: Numerical simulations of orographic gravity waves in flows which back with height. Quart. J. Roy. Meteor. Soc., 125, 2743–2765.

    Google Scholar 

  • Simard, A. and W. R. Peltier, 1982: Ship waves in the lee of isolated topography. J. Atmos. Sci, 39, 587–609.

    Article  Google Scholar 

  • Smith, R. B., 1976: Generation of lee waves by the Blue Ridge. J. Atmos. Sci., 33, 507–519.

    Google Scholar 

  • Smith, R. B. 1979, Influence of mountains on the atmosphere: Adv. Geophys., 21, 87–217.

    Google Scholar 

  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348–364.

    Google Scholar 

  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci, 42, 2597–2603.

    Google Scholar 

  • Smith, R. B., 1987: Aerial observations of the Yugoslavian Bora. J. Atmos. Sci., 44, 269–297.

    Google Scholar 

  • Smith, R. B., 1988: Linear-theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci, 45, 3889–3896.

    Article  Google Scholar 

  • Smith, R. B., 1989a: Hydrostatic Airflow Over Mountains. Adv. Geophys., 31, 1–41.

    Google Scholar 

  • Smith, R. B., 1989b: Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270–274.

    Google Scholar 

  • Smith, R. B., 1989c: Comment on “Low Froude number flow past three dimensional obstacles. Part I: Baroclinically generated lee vorticies”. J. Atmos. Sci., 46, 3611–3613.

    Google Scholar 

  • Smith, R.B., 1990: Why can’t stably stratified air rise over high ground? Atmospheric processes over Complex Terrain. Meteor. Monographs, W. Blumen, Ed., Amer. Meteor. Soc., No. 23, 105–107.

    Google Scholar 

  • Smith, R. B., A. C. Gleason, P. A. Gluhosky and V. Grubi_i_, 1997: The wake of St. Vincent. J. Atmos. Sci., 54, 606–623.

    Google Scholar 

  • Smith, R. B. and S. Grønås, 1993: The 3-D mountain airflow bifurcation and the onset of flow splitting. Tellus, 45A, 28–43.

    Google Scholar 

  • Smith, R. B. and V. Grubisic, 1993: Aerial observations of Hawaii’s wake. J. Atmos. Sci., 50, 3728–3750.

    Google Scholar 

  • Smith, R. B., S. Skubis, J. Doyle, A. Broad, C. Kiemle, and H. Volkert, 2000: Gravity waves over Mt. Blanc. Submitted to Quart. J. Roy. Meteor. Soc.

    Google Scholar 

  • Smith, R. B. and D. F. Smith, 1995: Pseudoinviscid wake formation by mountains in shallow-water flow with a drifting vortex. J. Atmos. Sci., 52, 436–454.

    Article  Google Scholar 

  • Snyder, W. H., R. S. Thompson, R. E. Eskridge, R. E. Larson, I. P Castro, J. I. Lee, J. C. R Hunt, and Y Ogawa, 1985: The structure of strongly stratified flow over hills: dividing streamline concept. J. Fluid Mech., 152, 249–288.

    Google Scholar 

  • Stein, J., 1992: Investigation of the regime diagram of hydrostatic flow over a mountain with a primitive equation model, Part I: Two-dimensional flows. Mon. Wea. Rev., 120, 2962–2976.

    Article  Google Scholar 

  • Thorpe, A. J., H. Volkert and D. Heimann, 1993: Potential vorticity of flow along the Alps. J. Atmos. Sci., 50, 1573–1590.

    Article  Google Scholar 

  • Tjernström, M. and B. Grisogono, 2000: Simulations of supercritical flow around points and capes in a coastal atmosphere. J. Atmos. Sci., 57, 108–135.

    Google Scholar 

  • Trini Castelli, S. and D. Anfossi, 1997: Intercomparison of 3D turbulence parameterisations for dispersion models in complex terrain derived from a circulation model. Il Nuovo Cimento, 20C, 287–313.

    Google Scholar 

  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367pp.

    Google Scholar 

  • Vosper, S. B. and S. D. Mobbs, 1996: Lee waves over the English Lake District. Quart. J. Roy. Meteor. Soc., 122, 1283–1305.

    Google Scholar 

  • Vosper, S. B. and S. D. Mobbs, 1997: Measurement of the pressure field on a mountain. Quart. J. Royal Meteor. Soc., 123(537 Part A): 129–144.

    Article  Google Scholar 

  • Welch, W., P. Smolarkiewicz, R. Rotunno, and B. Boville, 2000: The large scale effects of flow over periodic mesoscale topography. Submitted to J. Atmos. Sci.

    Google Scholar 

  • Winters, K. B. and E. A. D’Asaro, 1994: Three-dimensional wave instability near a critical level. J. Fluid Mech., 272, 255–284.

    Google Scholar 

  • Wurtele, M. G., 1957: The three-dimensional lee wave. Beitr. Phys. Atmos., 29, 242–252.

    Google Scholar 

  • Wurtele, M. G., R. D. Sharman and A. Datta, 1996: Atmospheric Lee Waves, Annual Rev. Fluid Mech., 28, 429–476.

    Google Scholar 

  • Wurtele, M. G., R. D. Sharman and T. L. Keller, 1987: Analysis and simulations of a troposphere-stratosphere gravity wave model. Part 1. J. Atmos. Sci., 44, 3269–3281.

    Article  Google Scholar 

  • Xu, D. and P. A. Taylor, 1997: On turbulence closure constants for amtospheric boundary-layer modelling: Neutral stratification. Bound.-Layer Meteor., 84, 267–287.

    Google Scholar 

  • Yih, C. S. and C. R. Guha, 1955: Hydraulic jump in a fluid system of two layers. Tellus, 7, 358–366.

    Article  Google Scholar 

  • Zilitinkevich, S. S. and D. L. Laikhtman, 1965: On closure of a system of equations for turbulent flow in the atmospheric boundary layer — Tr. GGO, 167, 44–48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Smith, R.B. (2003). Stratified Flow Over Topography. In: Grimshaw, R. (eds) Environmental Stratified Flows. Topics in Environmental Fluid Mechanics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-48024-7_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48024-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7605-7

  • Online ISBN: 978-0-306-48024-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics