Skip to main content

Advertisement

Log in

Evaluation of Two Energy Balance Closure Parametrizations

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273–292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701–716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the “missing energy” between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios \(\approx \)1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Article  Google Scholar 

  • Aubinet M, Heinesch B, Yernaux M (2003) Horizontal and vertical CO\(_{2}\) advection in a sloping forest. Boundary-Layer Meteorol 108:397–417

    Article  Google Scholar 

  • Baidya Roy S, Weaver CP, Nolan DS, Avissar R (2003) A preferred scale for landscape forced mesoscale circulations? J Geophys Res 108:8854

    Article  Google Scholar 

  • Barr AG, Griffis TJ, Black TA, Lee X, Staebler RM, Fuentes JD, Chen Z, Morgenstern K (2002) Comparing the carbon budgets of boreal and temperate deciduous forest stands. Can J For Res 32:813–822

    Article  Google Scholar 

  • Barr AG, Morgenstern K, Black TA, McCaughey JH, Nesic Z (2006) Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric For Meteorol 140:322–337

    Article  Google Scholar 

  • Barr AG, van der Kamp G, Black TA, McCaughey JH, Nesic Z (2012) Energy balance closure at the BERMS flux towers in relation to the water balance of the White Gull Creek watershed 1999–2009. Agric For Meteorol 153:3–13

    Article  Google Scholar 

  • Betts AK, Desjardins RL, MacPherson JI (1992) Budget analysis of the boundary layer grid flights during FIFE 1987. J Geophys Res 97:18533–18546

    Article  Google Scholar 

  • Bou-Zeid E, Parlange MB, Meneveau C (2007) On the parameterization of surface roughness at regional scales. J Atmos Sci 64:216–227

    Article  Google Scholar 

  • Dalu GA, Pielke RA, Baldi M, Zeng X (1996) Heat and momentum fluxes induced by thermal inhomogeneities with and without large-scale flow. J Atmos Sci 53:3286–3302

    Article  Google Scholar 

  • De Jong JJ, De Vries AC, Klaasen W (1999) Influence of obstacles on the aerodynamic roughness of the Netherlands. Boundary-Layer Meteorol 91:51–64

    Article  Google Scholar 

  • Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115

    Article  Google Scholar 

  • Desjardins RL (1985) Carbon dioxide budget of maize. Agric For Meteorol 36:29–41

    Article  Google Scholar 

  • Desjardins RL, Schuepp PH, MacPherson JI, Buckley DJ (1992) Spatial and temporal variations of the fluxes of carbon dioxide and sensible and latent heat over the FIFE site. J Geophys Res 97:18467–18475

    Article  Google Scholar 

  • Dobosy RJ, Crawford TL, MacPherson JI, Desjardins RL, Kelly RD, Oncley SP, Lenschow DH (1997) Intercomparison among four flux aircraft at BOREAS in 1994. J Geophys Res 102:29101–29111

    Article  Google Scholar 

  • Emeis S, Jahn C, Münkel C, Münsterer C, Schäfer K (2007) Multiple atmospheric layering and mixing-layer height in the Inn valley observed by remote sensing. Meteorol Z 16:415–424

    Article  Google Scholar 

  • Emeis S, Schäfer K, Münkel C (2008) Surface-based remote sensing of the mixing-layer height—a review. Meteorol Z 17:621–630

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques, Part I: averaging and coordinate rotation. Boundary-Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Foken T (2008) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367

    Article  Google Scholar 

  • Foken T, Mauder M, Liebethal C, Wimmer F, Beyrich F, Leps JP, Raasch S, DeBruin H, Meijninger W, Bange J (2010) Energy balance closure for the LITFASS-2003 experiment. Theor Appl Climatol 101:149–160

    Article  Google Scholar 

  • Foken T, Leuning R, Oncley SR, Mauder M, Aubinet M (2012) Corrections and data quality control. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 85–131

    Chapter  Google Scholar 

  • Frank JM, Massman WJ, Ewers BE (2013) Underestimates of sensible heat flux due to vertical velocity measurement errors in non-orthogonal sonic anemometers. Agric For Meteorol 171–172:72–81

    Article  Google Scholar 

  • Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736

    Article  Google Scholar 

  • Grossmann A, Kronland-Martinet R, Morlet J (1989) Reading and understanding continous wavelet transforms. In: Combes JM, Grossmann A, Tchamitchian P (eds) Wavelets: time-frequency methods and phase space. Springer, New York, pp 2–20

    Chapter  Google Scholar 

  • Hall FG, Knapp DE, Huemmrich KF (1997) Physically based classification and satellite mapping of biophysical characteristics in the southern boreal forest. J Geophys Res 102:29567–29580

    Article  Google Scholar 

  • Hendricks-Franssen HJ, Stöckli R, Lehner I, Rotenberg E, Seneviratne SI (2010) Energy balance closure of eddy-covariance data: a multisite analysis for European FLUXNET stations. Agric For Meteorol 150:1553–1567

    Article  Google Scholar 

  • Heusinkveld BG, Jacobs AFG, Holtslag AAM, Berkowicz SM (2004) Surface energy balance closure in an arid region: role of soil heat flux. Agric For Meteorol 122:21–37

    Article  Google Scholar 

  • Hiyama T, Strunin MA, Tanaka H, Ohta T (2007) The development of local circulations around the Lena River and their effect on tower-observed energy imbalance. Hydrol Proc 21:2038–2048

    Article  Google Scholar 

  • Huang J, Lee X, Patton E (2008) A modelling study of flux imbalance and the influence of entrainment in the convective boundary layer. Boundary-Layer Meteorol 127:273–292

    Article  Google Scholar 

  • Hudgins LE, Mayer ME, Friehe CA (1993) Fourier and wavelet analysis of atmospheric turbulence. In: Meyers E, Roques S (eds) Progress in wavelet analysis and applications. Editions Frontiers, Gif-sur-Yvette, pp 491–498

    Google Scholar 

  • Inagaki A, Letzel MO, Raasch S, Kanda M (2006) Impact of surface heterogeneity on energy imbalance: a study using LES. J Meteorol Soc Jpn 84:187–198

    Article  Google Scholar 

  • Ingwersen J, Steffens K, Högy P, Warrach-Sagi K, Zhunusbayeva D, Poltoradnev M, Gäbler R, Wizemann HD, Fangmeier A, Wulfmeyer V, Streck T (2011) Comparison of Noah simulations with eddy covariance and soil water measurements at a winter wheat stand. Agric For Meteorol 151:345–355

    Article  Google Scholar 

  • Kanda M, Inagaki A, Letzel MO, Raasch S, Watanabe T (2004) LES Study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorol 110:381–404

    Article  Google Scholar 

  • Kochendorfer J, Meyers TP, Frank J, Massman WJ, Heuer MW (2012) How well can we measure the vertical wind speed? Implications for fluxes of energy and mass. Boundary-Layer Meteorol 145:383–398

    Article  Google Scholar 

  • Kronland-Martinet R, Morlet J, Grossmann A (1987) Analysis of sound patterns through wavelet transforms. Int J Pattern Recogn 1:273–302

    Article  Google Scholar 

  • Lamaud E, Irvine M (2006) Temperature-humidity dissimilarity and heat-to-water-vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio. Boundary-Layer Meteorol 120:87–109

    Article  Google Scholar 

  • Lee X, Black TA (1993) Atmospheric turbulence within and above a douglas-fir stand. Part II: eddy fluxes of sensible heat and water vapour. Boundary-Layer Meteorol 64:369–389

    Article  Google Scholar 

  • Lenschow DH, Stankov BB (1986) Length scales in the convective boundary layer. J Atmos Sci 43:1198–1209

    Article  Google Scholar 

  • Leuning R, van Gorsel E, Massman WJ, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74

    Article  Google Scholar 

  • Liebethal C, Huwe B, Foken T (2005) Sensivity analysis for two ground heat flux calculation approaches. Agric For Meteorol 132:253–262

    Article  Google Scholar 

  • Lothon M, Couvreux F, Donier S, Guichard F, Lacarrère P, Lenschow D, Noilhan J, Saïd F (2007) Impact of coherent eddies on airborne measurements of vertical turbulent fluxes. Boundary-Layer Meteorol 124:425–447

    Article  Google Scholar 

  • MacPherson JI (1996) NRC Twin Otter operations in BOREAS, (1994) Rep LTR-FR-129. Natl Res Counc Can. Inst for Aerosp Res, Ottawa, 32 pp

  • Mahrt L (1998) Flux sampling errors for aircraft and towers. J Atmos Oceanic Technol 15:416–429

    Article  Google Scholar 

  • Mahrt L (2000) Surface heterogeneity and vertical structure of the boundary layer. Boundary-Layer Meteorol 96:33–62

    Article  Google Scholar 

  • Maronga B, Raasch S (2013) Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Boundary-Layer Meteorol 146:17–44

    Article  Google Scholar 

  • Mauder M (2013) A comment on “How well can we measure the vertical wind speed? Implications for fluxes of energy and mass”, by Kochendorfer, et al. Boundary-Layer Meteorol 47:329–335

    Article  Google Scholar 

  • Mauder M, Foken T (2011) Documentation and instruction manual of the Eddy-Covariance software package TK3. Arbeitsergebnisse/Universität Bayreuth, Abteilung Mikrometeorologie - 46. ISSN:1614–8916, 60 pp

  • Mauder M, Liebethal C, Goeckede M, Leps JP, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Boundary-Layer Meteorol 121:67–88

    Article  Google Scholar 

  • Mauder M, Jegede OO, Okogbue EC, Wimmer F, Foken T (2007a) Surface energy balance measurements at a tropical site in West Africa during the transition from dry to wet season. Theor Appl Climatol 89:171–183

    Article  Google Scholar 

  • Mauder M, Desjardins RL, MacPherson I (2007b) Scale analysis of airborne flux measurements over heterogeneous terrain in a boreal ecosystem. J Geophys Res 112:D13112

    Article  Google Scholar 

  • Mauder M, Oncley S, Vogt R, Weidinger T, Ribeiro L, Bernhofer C, Foken T, Kohsiek W, DeBruin H, Liu H (2007c) The energy balance experiment EBEX-2000. Part II: intercomparison of eddy-covariance sensors and post-field data processing methods. Boundary-Layer Meteorol 123:29–54

    Article  Google Scholar 

  • Mauder M, Desjardins RL, Pattey E, Worth D (2010) An attempt to close the daytime surface energy balance using spatially-averaged flux measurements. Boundary-Layer Meteorol 136:175–191

    Article  Google Scholar 

  • Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol 169:122–135

    Article  Google Scholar 

  • Moene AF, Schüttemeyer D (2008) The effect of surface heterogeneity on the temperature–humidity correlation and the relative transport efficiency. Boundary-Layer Meteorol 129:99–113

    Article  Google Scholar 

  • Moeng CH, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51:999–1022

    Article  Google Scholar 

  • Oncley S, Foken T, Vogt R, Kohsiek W, DeBruin H, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000. Part I: overview and energy balance. Boundary-Layer Meteorol 123:1–28

    Article  Google Scholar 

  • Panin GN, Bernhofer Ch (2008) Parametrization of turbulent fluxes over inhomogeneous landscapes. Izvestiya Atmos Oceanic Phys 44:701–716

    Article  Google Scholar 

  • Panin GN, Tetzlaff G, Raabe A (1998) Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions. Theor Appl Climatol 60:163–178

    Article  Google Scholar 

  • Patton EG, Sullivan PP, Moeng CH (2005) The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J Atmos Sci 62:2078–2097

    Article  Google Scholar 

  • Pearson RJ, Oncley SP, Delany AC (1998) A scalar similarity study based on surface layer ozone measurements over cotton during the California Ozone Deposition Experiment. J Geophys Res 103:18919–18926

    Article  Google Scholar 

  • Raasch S, Harbusch G (2001) An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Boundary-Layer Meteorol 101:31–59

    Article  Google Scholar 

  • Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol 120:39–63

    Article  Google Scholar 

  • Schmidt H, Schumann U (1989) Coherent structure of the convective boundary layer derived from large-eddy simulations. J Fluid Mech 200:511–562

    Article  Google Scholar 

  • Segal M, Arritt RW (1992) Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bull Am Meteorol Soc 73:1593–1604

    Article  Google Scholar 

  • Segal M, Avissar R, McCumber MC, Pielke RA (1988) Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J Atmos Sci 45:2268–2293

    Article  Google Scholar 

  • Sellers PJ, Hall FG, Kelly RD, Black A, Baldocchi D, Berry J, Ryan M, Ranson KJ, Crill PM, Lettenmaier DP, Margolis H, Cihlar J, Newcomer J, Fitzjarrald D, Jarvis PG, Gower ST, Halliwell D, Williams D, Goodison B, Wickland DE, Guertin FE (1997) BOREAS in 1997: Experiment overview, scientific results, and future directions. J Geophys Res 102:28731–28769

    Article  Google Scholar 

  • Shen S, Leclerc MY (1995) How large must surface inhomogeneities be before they influence the convective boundary layer structure? A case study. Q J R Meteorol Soc 121:1209–1228

    Article  Google Scholar 

  • Smith SD (1988) Coefficients for sea-surface wind-stress, heat flux and wind profiles as a function of wind-speed and temperature. J Geophys Res 93:15467–15472

    Article  Google Scholar 

  • Steinfeld G, Letzel M, Raasch S, Kanda M, Inagaki A (2007) Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study. Boundary-Layer Meteorol 123:77–98

    Article  Google Scholar 

  • Stoy PC, Katul GG, Siqueira MBS, Juang JY, Novick KA, McCarthy HR, Oishi AC, Uebelherr JM, Kim HS, Oren RAM (2006) Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Glob Change Biol 12:2115–2135

    Article  Google Scholar 

  • Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric For Meteorol 171–172:137–152

    Article  Google Scholar 

  • Strunin MA, Hiyama T (2005) Spectral structure of small-scale turbulent and mesoscale fluxes in the atmospheric boundary layer over a thermally inhomogeneous land surface. Boundary-Layer Meteorol 117:479–510

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht 666 pp

    Book  Google Scholar 

  • Sun J, Lenschow DH, Mahrt L, Crawford TL, Davis KJ, Oncley SP, MacPherson IJ, Wang Q, Dobosy RJ, Desjardins RL (1997) Lake-induced atmospheric circulations during BOREAS. J Geophys Res 102:29155–29166

    Article  Google Scholar 

  • Taylor PA (1987) Comments and further analysis on effective roughness lengths for use in numerical three-dimensional models. Boundary-Layer Meteorol 39:403–418

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesley ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Oceanic Technol 20:660–672

    Article  Google Scholar 

  • von Randow C, Sá LDA, Gannabathula PSSD, Manzi AO, Arlino PRA, Kruijt B (2002) Scale variability of atmospheric surface layer fluxes of energy and carbon over a tropical rain forest in southwest Amazonia 1. Diurnal conditions. J Geophys Res 107:8062

    Article  Google Scholar 

  • Wieringa J (1993) Representative roughness parameters for homogeneous terrain. Boundary-Layer Meteorol 63:323–363

    Article  Google Scholar 

  • Wilczak JL, Cancillo ML, King CW (1997) A wind profiler climatology of boundary layer structure above the boreal forest. J Geophys Res 102:29083–29100

    Article  Google Scholar 

  • Williams AG, Kraus H, Hacker JM (1996) Transport processes in the tropical warm pool boundary layer. Part I: spectral composition of fluxes. J Atmos Sci 53:1187–1202

    Article  Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243

    Article  Google Scholar 

  • Zacharias S, Bogena H, Samaniego L, Mauder M, Fuß R, Pütz T, Frenzel M, Schwank M, Baessler C, Butterbach-Bahl K, Bens O, Borg E, Brauer A, Dietrich P, Hajnsek I, Helle G, Kiese R, Kunstmann H, Klotz S, Munch JC, Papen H, Priesack E, Schmid HP, Steinbrecher R, Rosenbaum U, Teutsch G, Vereecken H (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10:955–973

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Baltasar Trancón y Widemann for providing the wavelet routine. Some aspects of this manuscript are part of the master’s thesis of Katrin Kohnert at the University of Bayreuth, which was supervised by Thomas Foken. Funding for TERENO & TERENO-ICOS was provided by BMBF. The support by the land owners of the TERENO sites and technical staff of KIT/IMK-IFU is appreciated. This work was conducted within the Helmholtz Young Investigator Group “Capturing all relevant scales of biosphere-atmosphere exchange—the enigmatic energy balance closure problem”, which is funded by the Helmholtz-Association through the President’s Initiative and Networking Fund, and by KIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Eder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eder, F., De Roo, F., Kohnert, K. et al. Evaluation of Two Energy Balance Closure Parametrizations. Boundary-Layer Meteorol 151, 195–219 (2014). https://doi.org/10.1007/s10546-013-9904-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-013-9904-0

Keywords

Navigation