Skip to main content
Log in

MRI driven magnetic microswimmers

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Capsule endoscopy is a promising technique for diagnosing diseases in the digestive system. Here we design and characterize a miniature swimming mechanism that uses the magnetic fields of the MRI for both propulsion and wireless powering of the capsule. Our method uses both the static and the radio frequency (RF) magnetic fields inherently available in MRI to generate a propulsive force. Our study focuses on the evaluation of the propulsive force for different swimming tails and experimental estimation of the parameters that influence its magnitude. We have found that an approximately 20 mm long, 5 mm wide swimming tail is capable of producing 0.21 mN propulsive force in water when driven by a 20 Hz signal providing 0.85 mW power and the tail located within the homogeneous field of a 3 T MRI scanner. We also analyze the parallel operation of the swimming mechanism and the scanner imaging. We characterize the size of artifacts caused by the propulsion system. We show that while the magnetic micro swimmer is propelling the capsule endoscope, the operator can locate the capsule on the image of an interventional scene without being obscured by significant artifacts. Although this swimming method does not scale down favorably, the high magnetic field of the MRI allows self propulsion speed on the order of several millimeter per second and can propel an endoscopic capsule in the stomach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • J.J. Abbott, K.E. Peyer, M.C. Lagomarsino, L. Zhang, L. Dong, I.K. Kaliakatsos, B.J. Nelson, Int. J. Robot. Res. 28, 1434–1447 (2009)

    Article  Google Scholar 

  • B. Behkam, M. Sitti, Appl. Phys. Lett. 93, 223901 (2008)

    Article  Google Scholar 

  • D.J. Bell, S. Leutenegger, K.M. Hammar, L.X. Dong, B.J. Nelson, IEEE International Conference on Robotics and Automation, 1128–1133 (2007)

  • M. Berris, M. Shoham, Comput. Aided Surg. 11, 175–180 (2006)

    Google Scholar 

  • R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862–865 (2005)

    Article  Google Scholar 

  • Ö. Ekeberg, Biol. Cybern. 69, 363–374 (1993)

    MATH  Google Scholar 

  • G.S. Fischer, I. Iordachita, C. Csoma, J. Tokuda, S.P. DiMaio, C.M. Tempany, N. Hata, G. Fichtinger, IEEE ASME Trans. Mechatron. 13, 295–305 (2008)

    Article  Google Scholar 

  • S. Guo, Q. Pan, M. Khamesee, Microsystem Technologies 14, 307–314 (2008)

    Article  Google Scholar 

  • S.X. Guo, Y.M. Ge, L.F. Li, S. Liu, IEEE ICMA 2006: Proceeding of the 2006 IEEE International Conference on Mechatronics and Automation, Vols 1–3, Proceedings, 249254 (2006)

  • N. Hata, J. Tokuda, S. Hurwitz, S. Morikawa, J. Magn. Reson. Imaging 27, 1130–1138 (2008)

    Article  Google Scholar 

  • T. Honda, K.I. Arai, K. Ishiyama, Magnetics. IEEE Transactions on Magnetics 32, 5085–5087 (1996)

    Article  Google Scholar 

  • A. International, Standard Test Method for Evaluation of MR Image Artifacts from Passive Implants. vol. F 2119 – 01 (2006)

  • G. Kosa, Micro Robots for Medical Applications, in Surgical Robotics - Systems, Applications, and Visions, Hannaford B., Satava R., and Rosen J., Eds., 2010 (2010)

  • G. Kosa, P. Jakab, N. Hata, F. Jolesz, Z. Neubach, M. Shoham, M. Zaaroor, G. Szekely, Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. Proceedings of the 2nd IEEE RAS & EMBS International Conference on, 258–263 (2008a)

  • G. Kosa, P. Jakab, F. Jolesz, N. Hata, Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2922–2927 (2008b)

  • G. Kosa, M. Shoham, M. Zaaroor, IEEE Trans. Robot. 23, 137–150 (2007)

    Article  Google Scholar 

  • G. Kosa, G. Szekely, Hamlyn Symposium for Medical Robotics, London, (2010)

  • E. Lauga, Physical Review E 75, 041916 (2007)

    Article  MathSciNet  Google Scholar 

  • W. Liu, X. Jia, F. Wang, Z. Jia, Sensor Actuator Phys. 160, 101–108 (2010)

    Article  Google Scholar 

  • S. Martel, O. Felfoul, J.-B. Mathieu, A. Chanu, S. Tamaz, M. Mohammadi, M. Mankiewicz, N. Tabatabaei, Int. J. Robot. Res. 28, 1169–1182 (2009)

    Article  Google Scholar 

  • J.B. Mathieu, G. Beaudoin, S. Martel, Biomedical Engineering. IEEE Transactions on Biomedical Engineering 53, 292–299 (2006)

    Article  Google Scholar 

  • J.B. Mathieu, S. Martel, L.H. Yahia, G. Soulez, G. Beaudoin, Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 4, 3419–3422 (2003)

  • L. Meirovitch, Elements of Vibration Analysis (Tokyo, McGraw-Hill, 1975)

    MATH  Google Scholar 

  • A. Menciassi, P. Valdastri, K. Harada, P. Dario, Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 238–243 (2008)

  • A. Moglia, A. Menciassi, M.O. Schurr, P. Dario, Biomed. Microdevices 9, 235–243 (2007)

    Article  Google Scholar 

  • A.C. Nayfeh, D.T. Mook, Nonlinear Oscillations (New York, Wiley and Sons, 1979)

    MATH  Google Scholar 

  • B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  • P. Pouponneau, J.-C. Leroux, G. Soulez, L. Gaboury, S. Martel, Biomaterials 32, 3481–3486 (2011)

    Article  Google Scholar 

  • M. Sendoh, K. Ishiyama, K.I. Arai, Magnetics. IEEE Transactions on Magnetics 39, 3232–3234 (2003)

    Google Scholar 

  • K.B. Yesin, K. Vollmers, B.J. Nelson, Int. J. Rob. Res. 25, 527–536 (2006)

    Article  Google Scholar 

  • Z. Yi, W. Qimin, Z. Peiqiang, W. Xiaohua, M. Tao, Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, 1746–1750 vol.2 (2004)

  • L. Zhang, J.J. Abbott, L. Dong, K.E. Peyer, B.E. Kratochvil, H. Zhang, C. Bergeles, B.J. Nelson, Nano Lett. 9, 3663–3667 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This publication was made possible by grant number 5P41RR019703, 5P01CA067165 from the National Institutes of Health. The authors would like to thank Center for Integration of Medicine and Innovative Technology (CIMIT) for the generous funding of this project and Dr. Gregory Zilman for his helpful suggestion to include the added mass in the elastic model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Kósa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kósa, G., Jakab, P., Székely, G. et al. MRI driven magnetic microswimmers. Biomed Microdevices 14, 165–178 (2012). https://doi.org/10.1007/s10544-011-9594-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9594-7

Keywords

Navigation