Skip to main content
Log in

New stability results for explicit Runge–Kutta methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The theory of polar forms of polynomials is used to provide sharp bounds on the radius of the largest possible disc (absolute stability radius), and on the length of the largest possible real interval (parabolic stability radius), to be inscribed in the stability region of an explicit Runge–Kutta method. The bounds on the absolute stability radius are derived as a consequence of Walsh’s coincidence theorem, while the bounds on the parabolic stability radius are achieved by using Lubinsky–Ziegler’s inequality on the coefficients of polynomials expressed in the Bernstein bases and by appealing to a generalized variation diminishing property of Bézier curves. We also derive inequalities between the absolute stability radii of methods with different orders and number of stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdulle, A.: On roots and error constants of optimal stability polynomials. BIT Numer. Math. 40(1), 177–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23(60), 2041–2054 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ait-Haddou, R.: Adaptative spectral transformations of Poisson–Charlier measures and optimal threshold factors of one-step methods. arXiv:1804.09972

  4. Ait-Haddou, R., Mazure, M.-L.: The fundamental blossoming inequality in Chebyshev spaces I: applications to Schur functions. Found. Comput. Math. 18, 135–158 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ait-Haddou, R., Mazure, M.-L.: Approximation by Chebyshevian Bernstein operators versus convergence of dimension elevation. Constr. Approx. 43(3), 425–461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ait-Haddou, R.: \(q\)-Blossoming and Hermite–Padé approximants to the \(q\)-exponential function. Numer. Algorithms 76(1), 53–66 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ait-Haddou, R., Herzog, W., Nomura, T.: Complex Bézier curves and the geometry of polygons. Comput. Aided Geom. Des. 27(7), 525–537 (2010)

    Article  MATH  Google Scholar 

  8. Ait-Haddou, R., Nomura, T., Biard, L.: A refinement of the variation diminishing property of Bézier curves. Comput. Aided Geom. Des. 27(2), 202–211 (2010)

    Article  MATH  Google Scholar 

  9. Ait-Haddou, R., Nomura, T.: Complex Bézier curves and the geometry of polynomials. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces, Lecture Note in Computer Sciences, vol. 6920, pp. 43–65. Springer, Berlin (2012)

    MATH  Google Scholar 

  10. Bogatyrev, A.B.: Effective solution of the problem of the best stability polynomial. Mat. Sb. 196(7), 27–50 (2005)

    Article  MathSciNet  Google Scholar 

  11. Bernstein, S.N.: Sur une propriété de polynômes. Commun. Soc. Math. Kharkow S&. 2 14(1–2), 1–6 (1913); In: Collected Works, vol. 1, Izd. AN SSSR, Moscow, pp. 146–150 (1952)

  12. Erdös, P.: Some remarks on polynomials. Bull. Am. Math. Soc. 53(12), 1169–1176 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franklin, J.N.: Numerical stability in digital and analog computation for diffusion problems. J. Math. Phys. 37, 305–315 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grosswald, E.: Bessel Polynomials, Springer Lecture Notes 698, Berlin (1978)

  15. Guillou, A., Lago, B.: Domaine de stabilité associé aux formules d’intégration numérique d’équations différentielles, à pas séparés et à pas liés. Recherche de formules à grand rayon de stabilité, 1er Cong. Assoc. Fran. Calcul, AFCAL, Grenoble, pp. 43–56 (1960)

  16. Jeltsch, R., Nevanlinna, O.: Largest disk of stability of explicit Runge–Kutta methods. BIT Numer. Math. 18, 500–502 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeltsch, R., Nevanlinna, O.: Stability of explicit time discretizations for solving initial value problems. Numer. Math. 37, 61–91 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ketcheson, D., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value problems. Commun. Appl. Math. Comput. Sci. 7(2), 247–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kinnmark, I.P.E., Gray, W.G.: One step integration methods of third-fourth order accuracy with large hyperbolic stability limits. Math. Comput. Simul. 26(3), 181–188 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kinnmark, I.P.E., Gray, W.G.: One step integration methods with maximum stability regions. Math. Comput. Simul. 26(2), 87–92 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lawson, J.D.: An order five Runge–Kutta process with extended region of stability. SIAM J. Numer. Anal. 3, 593–597 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lebedev, V.I.: Zolotarev polynomials and extremum problems. Russ. J. Numer. Anal. Math. Model. 9(3), 231–263 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lebedev, V.I.: A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions I, II. Russ. J. Numer. Anal. Math. Model. 8(3), 195–222 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lubinsky, D.S., Ziegler, Z.: Coefficients bounds in the Lorentz representation of a polynomial. Can. Math. Bull. 33, 197–206 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mead, J.L., Renaut, R.A.: Optimal Runge–Kutta methods for first order pseudospectral operators. J. Comput. Phys. 152(1), 404–419 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Medovikov, A.A.: High order explicit methods for parabolic equations. BIT Numer. Math. 38(2), 372–390 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. McLachlan, R.I., Quispel, R.G.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. McLachlan, R.I., Gray, S.K.: Optimal stability polynomials for splitting methods, with applications to the time-dependent Schrödinger equation. Appl. Numer. Math. 25, 275–286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Obreschkoff, N.: Verteilung und Berechnung der Nullstellen reeller Polynome. VEB Deutscher Verlag der Wissenschaften, Berlin (1963)

    MATH  Google Scholar 

  31. Owren, B., Seip, K.: Some Stability Results for Explicit Runge–Kutta Methods. Mathematics and Computation, vol. 6/89, The University of Trondheim (1989)

  32. Owren, B., Seip, K.: A uniqueness result related to the stability of explicit Runge–Kutta methods. BIT Numer. Math. 31(2), 373–374 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Owren, B., Seip, K.: Some stability results for explicit Runge–Kutta methods. BIT Numer. Math. 30(4), 700–706 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Popa, D., Rasa, I.: On the best constant in Hyers–Ulam stability of some positive linear operators. J. Math. Anal. Appl. 412(1), 103–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6(4), 323–358 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Renaut, R.A.: Two-step Runge–Kutta methods and hyperbolic partial differential equations. Math. Comput. 55(192), 563–579 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Riha, W.: Optimal stability polynomials. Computing 9(1), 37–43 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42(3), 271–290 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge–Kutta methods with application to hyperbolic–parabolic equations. Numer. Math. 106(2), 303–334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. van der Marel, R.P.: Stability radius of polynomials occurring in the numerical solution of initial value problems. BIT Numer. Math. 30(3), 516–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Verwer, J.G.: Explicit Runge–Kutta methods for parabolic partial differential equations. Appl. Numer. Math. 22(1–3), 359–379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  42. Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection–diffusion reaction problems. J. Comput. Phys. 201(1), 61–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. van der Houwen, P.J.: Explicit Runge–Kutta formulas with increased stability boundaries. Numer. Math. 20, 149–164 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  44. van Der Houwen, P.J.: Construction of Integration Formulas for Initial Value Problems, vol. 19. Elsevier, Amsterdam (2012)

    Google Scholar 

  45. Vichnevetsky, R.: New stability theorems concerning one-step numerical methods for ordinary differential equations. Math. Comput. Simul. 25(3), 199–205 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Ait-Haddou.

Additional information

Communicated by Antonella Zanna Munthe-Kaas.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait-Haddou, R. New stability results for explicit Runge–Kutta methods. Bit Numer Math 59, 585–612 (2019). https://doi.org/10.1007/s10543-019-00752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-019-00752-9

Keywords

Mathematics Subject Classification

Navigation