Skip to main content
Log in

Stability of explicit time discretizations for solving initial value problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

Stability regions of explicit “linear” time discretization methods for solving initial value problems are treated. If an integration method needsm function evaluations per time step, then we scale the stability region by dividing bym. We show that the scaled stability region of a method, satisfying some reasonable conditions, cannot be properly contained in the scaled stability region of another method. Bounds for the size of the stability regions for three different purposes are then given: for “general” nonlinear ordinary differential systems, for systems obtained from parabolic problems and for systems obtained from hyperbolic problems. We also show how these bounds can be approached by high order methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheney, E.W.: Introduction to approximation theory. New York: McGraw-Hill 1966

    Google Scholar 

  2. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand.4, 33–53 (1956)

    Google Scholar 

  3. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Roy. Inst. Tech., Stockholm, Nr.130 (1959)

  4. Dahlquist, G.: A special stability problem for linear multistep methods. BIT3, 27–43 (1963)

    Google Scholar 

  5. Dahlquist, G.: The Theory of linear multistep methods and related mathematical topics. Department of Numerical Analysis, Royal Institute of Technology, Stockholm, 1976

    Google Scholar 

  6. Dahlquist, G.:G-stability is equivalent toA-stability. BIT18, 384–401 (1978)

    Google Scholar 

  7. Dahlquist, G.: Positive functions and some applications to stability questions for numerical methods. In: Recent advances in numerical analysis, (C. de Boor, G. Golub, eds.) 1979

  8. Dahlquist, G.: Some properties of linear multistep and one-leg methods for ordinary differential equations. Royal Inst. of Tech., Stockholm, Comp. Sci. Report TRITA-NA-7904, 1979

    Google Scholar 

  9. Dahlquist, G., Jeltsch, R.: Generalized disks of contractivity for explicit and implicit Runge-Kutta methods. Royal Inst. of Tech., Stockholm, Comp. Sci. Report TRITA-NA-7906, 1979

    Google Scholar 

  10. Henrici, P.: Discrete variable methods in ordinary differential equations. New York: Wiley,1962

    Google Scholar 

  11. Jeltsch, R.: Multistep methods using higher derivatives and damping at infinity. Math. Comp.31, 124–138 (1977)

    Google Scholar 

  12. Jeltsch, R.: A necessary condition forA-stability of multistep multiderivative methods. Math. Comp.30, 739–746 (1976)

    Google Scholar 

  13. Jeltsch, R., Nevanlinna, O.: Largest disk of stability of explicit Runge-Kutta methods. BIT18, 500–502 (1978)

    Google Scholar 

  14. Lambert, J.D.: Computational methods in ordinary differential equations. London: Wiley, 1973

    Google Scholar 

  15. Mannshardt, R.: Prädiktoren mit vorgeschriebenem Stabilitätsverhalten. In: Numerical treatment of differential equations. (R. Bulirsch, R.D. Grigorieff, J. Schröder, eds.) Lecture Notes in Mathematics, Vol. 631, pp. 81–96. Berlin Heidelberg New York: Springer, 1978

    Google Scholar 

  16. Nevanlinna, O.: On the numerical integration of nonlinear initial value problems by linear multistep methods, BIT17, 58–71 (1977)

    Google Scholar 

  17. Nevanlinna, O., Sipilä, A.H.: A nonexistence theorem for explicitA-stable methods. Math. Comp.28, 1053–1056 (1974)

    Google Scholar 

  18. Nevanlinna, O., Liniger, W.: Contractive methods for stiff differential equations, I. BIT18, 457–474 (1978), Part II. BIT19, 53–72 (1979)

    Google Scholar 

  19. Pfluger, A.: Theorie der Riemannschen Flächen. Berlin Heidelberg New York: Springer 1957

    Google Scholar 

  20. Reimer, M.: Finite difference forms containing derivatives of higher order. SIAM J. Numer. Anal.,5, 725–738 (1968)

    Google Scholar 

  21. Saff, E.B., Varga, R.S.: Zero-free parabolic regions for sequences of polynomials. SIAM J. Math. Anal.7, 344–357 (1976)

    Google Scholar 

  22. Stetter, H.J.: Analysis of discretization methods of ordinary differential equations. Berlin Heidelberg New York: Springer 1973

    Google Scholar 

  23. Szegö, G.: Über eine Eigenschaft der Exponentialreihe, Sitzungsberichte der Berliner Mathematischen Gesellschaft23, 50–64 (1924)

    Google Scholar 

  24. van der Houwen, P.J.: Construction of integration formulas for initial value problems. Amsterdam: North-Holland 1977

    Google Scholar 

  25. Wanner, G., Hairer, E., Nørsett, S.P.: Order stars and stability theorems. BIT18, 475–489 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by the Swiss National Foundation, grant No. 82-524.077

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeltsch, R., Nevanlinna, O. Stability of explicit time discretizations for solving initial value problems. Numer. Math. 37, 61–91 (1981). https://doi.org/10.1007/BF01396187

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01396187

Subject Classifications

Navigation