Skip to main content
Log in

Pricing multi-asset option problems: a Chebyshev pseudo-spectral method

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to contribute a new second-order pseudo-spectral method via a non-uniform distribution of the computational nodes for solving multi-asset option pricing problems. In such problems, the prices are required to be as accurately as possible around the strike price. Accordingly, the proposed modification of the Chebyshev–Gauss–Lobatto points would concentrate on this area. This adaptation is also fruitful for the non-smooth payoffs which cause discontinuities in the strike price. The proposed scheme competes well with the existing methods such as finite difference, meshfree, and adaptive finite difference methods on several benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abell, M.L., Braselton, J.P.: Mathematica by Example, 5th edn. Academic Press, Dordrecht (2017)

    MATH  Google Scholar 

  2. Borovkova, S., Permana, F., der Weide, J.V.: American basket and spread option pricing by a simple binomial tree. J. Deriv. 19, 29–38 (2012)

    Article  Google Scholar 

  3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, England (2008)

    Book  MATH  Google Scholar 

  4. Company, R., Egorova, V.N., Jódar, L., Soleymani, F.: A local radial basis function method for high-dimensional American option pricing problems. Math. Model. Anal. 23, 117–138 (2018)

    Article  MathSciNet  Google Scholar 

  5. Dang, D.M., Christara, C.C., Jackson, K.R.: An efficient graphics processing unit-based parallel algorithm for pricing multi-asset American options. Concurr. Computat. Pract. Exp. 24, 849–866 (2012)

    Article  Google Scholar 

  6. d’Halluin, Y., Forsyth, P.A., Labahn, G.: A penalty method for American options with jump diffusion processes. Numer. Math. 97, 321–352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrhardt, M., Günther, M., ter Maten, E.J.W.: Novel Methods in Computational Finance. Springer, Switzerland (2017)

    Book  MATH  Google Scholar 

  8. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  9. Gad, K.S.T., Pedersen, J.L.: Rationality parameter for exercising American put. Risks 3, 103–111 (2015)

    Article  Google Scholar 

  10. Geske, R., Shastri, K.: Valuation by approximation: a comparison of alternative approaches. J. Func. Quant. Anal. 20, 45–71 (1985)

    Article  Google Scholar 

  11. Giribone, P.G., Ligato, S.: Option pricing via radial basis functions: performance comparison with traditional numerical integration scheme and parameters choice for a reliable pricing. Int. J. Financ. Eng. 2, 1550018 (2015)

    Article  MathSciNet  Google Scholar 

  12. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2003)

    Book  MATH  Google Scholar 

  13. Gzyl, H., Milev, M., Tagliani, A.: Discontinuous payoff option pricing by Mellin transform: a probabilistic approach. Financ. Res. Lett. 20, 281–288 (2017)

    Article  Google Scholar 

  14. Hout, K.J.I., Foulon, S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7, 303–320 (2010)

    MathSciNet  Google Scholar 

  15. Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17, 809–814 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janson, S., Tysk, J.: Feynman–Kac formulas for Black–Scholes-type operators. Bull. Lond. Math. Soc. 38, 269–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black–Scholes equations. SIAM J. Numer. Anal. 38, 1357–1368 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khaliq, A.Q.M., Voss, D.A., Kazmi, K.: Adaptive \(\theta \)-methods for pricing American options. J. Comput. Appl. Math. 222, 210–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Knapp, R.: A method of lines framework in Mathematica. J. Numer. Anal. Indust. Appl. Math. (JNAIAM) 3, 43–59 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Kovalov, P., Linetsky, V., Marcozzi, M.: Pricing multi-asset American options: a finite element method-of-lines with smooth penalty. J. Sci. Comput. 33, 209–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31, 1688–1714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leentvaar, C.C.W.: Pricing multi-asset options with sparse grids. PhD Thesis, TU Delft, The Netherlands (2008)

  23. Lötstedt, P., Persson, J., von Sydow, L., Tysk, J.: Space-time adaptive finite difference method for European multi-asset options. Comput. Math. Appl. 53, 1159–1180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martín-Vaquero, J., Khaliq, A.Q.M., Kleefeld, B.: Stabilized explicit Runge–Kutta methods for multi-asset American options. Comput. Math. Appl. 67, 1293–1308 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Milovanović, S., von Sydow, L.: Radial basis function generated finite differences for option pricing problems. Comput. Math. Appl. 75, 1462–1481 (2017)

    Article  MathSciNet  Google Scholar 

  26. Milovanović, S., Shcherbakov, V.: Pricing derivatives under multiple stochastic factors by localized radial basis function methods (2018). arXiv:1711.09852

  27. Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty methods for the numerical solution of American multi-asset option problems. J. Comput. Appl. Math. 222, 3–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramage, A., von Sydow, L.: A multigrid preconditioner for an adaptive Black–Scholes solver. BIT 51, 217–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reddy, S.C., Trefethen, L.N.: Stability of the method of lines. Numer. Math. 62, 235–267 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shcherbakov, V.: Radial basis function partition of unity operator splitting method for pricing multi-asset American options. BIT 56, 1401–1423 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket options. Comput. Math. Appl. 71, 185–200 (2016)

    Article  MathSciNet  Google Scholar 

  32. Sofroniou, M., Knapp, R.: Advanced Numerical Differential Equation Solving in Mathematica. Wolfram Mathematica, Tutorial Collection, USA (2008)

  33. Tavella, D., Randall, C.: Pricing Financial Instruments: The Finite Difference Method. Wiley, New York (2007)

    Google Scholar 

  34. Traub, J.F.: Iterative Methods for Solution of Equation. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  35. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators. Princeton Unversity Press, Princeton and Oxford (2005)

    MATH  Google Scholar 

  36. van Dorsselaer, J.L.M., Kraaijevanger, J.F.B.M., Spijker, M.N.: Linear stability analysis in the numerical solution of initial value problems. Acta Numerica 2, 99–237 (1993)

    MathSciNet  MATH  Google Scholar 

  37. von Sydow, L., Höök, L.J., Larsson, E., Lindström, E., Milovanović, S., Persson, J., Shcherbakov, V., Shpolyanskiy, Y., Sirén, S., Toivanen, J., Waldén, J., Wiktorsson, M., Levesley, J., Li, J., Oosterlee, C.W., Ruijter, M.J., Toropov, A., Zhao, Y.: BENCHOP—the BENCHmarking project in option pricing. Int. J. Comput. Math. 92, 2361–2379 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yousuf, M., Khaliq, A.Q.M., Liu, R.: Pricing American options under multi-state regime switching with an efficient \(L\)-stable method. Int. J. Comput. Math. 92, 2530–2550 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to two anonymous referees and the handling editor for several corrections and comments, which directly contribute to the readability and reliability of the current paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlollah Soleymani.

Additional information

Communicated by Elisabeth Larsson.

Appendix

Appendix

We here provide the PDE formulation in Option Problem 4 with the initial and boundary conditions given in Sect. 2 for interested readers as follows.

$$\begin{aligned} \frac{\partial \mathcal {V}}{\partial \tau }&= \frac{1}{2}\sigma _1^2 S_1^2 \frac{\partial ^2 \mathcal {V}}{\partial S_1^2} +\frac{1}{2}\sigma _2^2 S_2^2 \frac{\partial ^2 \mathcal {V}}{\partial S_2^2} +\frac{1}{2}\sigma _3^2 S_3^2 \frac{\partial ^2 \mathcal {V}}{\partial S_3^2} +\frac{1}{2}\sigma _4^2 S_4^2 \frac{\partial ^2 \mathcal {V}}{\partial S_4^2} +\frac{1}{2}\sigma _5^2 S_5^2 \frac{\partial ^2 \mathcal {V}}{\partial S_5^2}\nonumber \\&\quad +\sigma _1 \sigma _2 \rho _{1,2} S_1 S_2 \frac{\partial ^2 \mathcal {V}}{\partial S_1\, \partial S_2} +\sigma _1 \sigma _3 \rho _{1,3} S_1 S_3 \frac{\partial ^2 \mathcal {V}}{\partial S_1\, \partial S_3}\nonumber \\&\quad +\sigma _1 \sigma _4 \rho _{1,4} S_1 S_4 \frac{\partial ^2 \mathcal {V}}{\partial S_1\, \partial S_4} +\sigma _1 \sigma _5 \rho _{1,5} S_1 S_5 \frac{\partial ^2 \mathcal {V}}{\partial S_1\, \partial S_5}\nonumber \\&\quad +\sigma _2 \sigma _3 \rho _{2,3} S_2 S_3 \frac{\partial ^2 \mathcal {V}}{\partial S_2\, \partial S_3} +\sigma _2 \sigma _4 \rho _{2,4} S_2 S_4 \frac{\partial ^2 \mathcal {V}}{\partial S_2\, \partial S_4}\nonumber \\&\quad +\sigma _2 \sigma _5 \rho _{2,5} S_2 S_5 \frac{\partial ^2 \mathcal {V}}{\partial S_2\, \partial S_5} +\sigma _3 \sigma _4 \rho _{3,4} S_3 S_4 \frac{\partial ^2 \mathcal {V}}{\partial S_3\, \partial S_4}\nonumber \\&\quad +\sigma _3 \sigma _5 \rho _{3,5} S_3 S_5 \frac{\partial ^2 \mathcal {V}}{\partial S_3\, \partial S_5} +\sigma _4 \sigma _5 \rho _{4,5} S_4 S_5 \frac{\partial ^2 \mathcal {V}}{\partial S_4\, \partial S_5}\nonumber \\&\quad +(r-q_1) S_1 \frac{\partial \mathcal {V}}{\partial S_1} +(r-q_2) S_2 \frac{\partial \mathcal {V}}{\partial S_2} +(r-q_3) S_3 \frac{\partial \mathcal {V}}{\partial S_3}\nonumber \\&\quad +(r-q_4) S_4 \frac{\partial \mathcal {V}}{\partial S_4} +(r-q_5) S_5 \frac{\partial \mathcal {V}}{\partial S_5} -r \mathcal {V}. \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, F. Pricing multi-asset option problems: a Chebyshev pseudo-spectral method. Bit Numer Math 59, 243–270 (2019). https://doi.org/10.1007/s10543-018-0722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0722-0

Keywords

Mathematics Subject Classification

Navigation